

МДМ40-Р, МДМ50-Р

Ультракомпактные DC/DC преобразователи

БКЯЮ.436630.052ТУ

1. Описание

Ультракомпактные изолированные DC/DC модули электропитания MДМ-P для жёстких условий эксплуатации. При небольших габаритах ($50 \times 30,2 \times 10,25$ мм без учёта выводов) максимальная выходная мощность модулей достигает 50 Вт.

Имеют высокую частоту преобразования (ШИМ), расширенный диапазон входного напряжения. При этом модули способны работать в широком диапазоне температур корпуса (–60...+125°C). Они могут включаться и выключаться по команде, имеют полный комплекс защит.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием пыли, влаги или соляного тумана. При изготовлении каждый модуль проходит специальные виды испытаний: климатические, электротермотренировку, многократный визуальный контроль ОТК и измерение электрических параметров на участках РЭА.

1.1. Особенности

- Гарантия 20 лет
- Широкие диапазоны входного напряжения (4:1)
- Выходной ток до 10 А
- Рабочая температура корпуса 60...+125°C
- Магнитная обратная связь без оптронов
- Защита от КЗ и перенапряжения, тепловая защита
- Частота преобразования 440 кГц
- Типовой КПД 86%
- Полимерная герметизирующая заливка
- Дистанционное вкл/выкл
- Регулировка выходного напряжения
- Внешняя синхронизация частоты преобразования

1.2. Дополнительная информация

1.2.1. Описание на сайте производителя

https://aedon.ru/catalog/dcdc/series/14

1.2.2. Отдел продаж и служба технической поддержки

+7 (473) 300-300-5; mail@aedon.ru

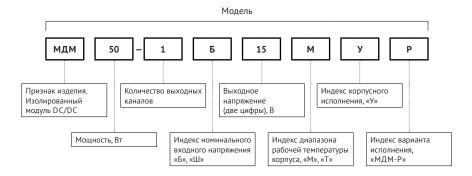
1.2.3. 3D модели, footprint для Altium Designer

https://aedon.ru/content/catalog/docs/308,263,273,172,236,171,237,173,238.174,239,365,371,364,372/MДМ-P

1.2.4. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/

https://dzen.ru/aedon/


2. Содержание

1. Описание	1
1.1. Разработаны в соответствии	1
1.2. Особенности	1
1.3. Дополнительная информация	1
2. Содержание	2
3. Информация для заказа	2
3.1. Сокращения	2
3.2. Выходная мощность и ток	3
3.3. Индекс номинального входного напряжения	3
4. Основные характеристики	3
4.1. Выходные характеристики	3
4.2. Защиты	4
4.3. Общие характеристики	4
4.4. Конструктивные параметры	4

5. Функциональные схемы	
6. Схемы подключения	
6.1. Рекомендуемая топология печатной платы	
7. Сервисные функции	
7.1. Дистанционное управление	
7.2. Регулировка	
7.3. Сихронизация	
8. Результаты испытаний	
8.1. КПД	
8.2. Ограничение мощности	1
8.3. Осциллограммы	1
8.4. Измерения кондуктивных радиопомех (ЭМС)	1
9. Габаритные чертежи	1
10 Радиаторы охлаждения	11

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{BыX} .	Выходная мощность
U _{Bых.ном.}	Номинальное выходное напряжение
І _{вых.ном.}	Номинальный выходной ток
І _{вых.мин.}	Минимальный выходной ток
U _{BX.HOM.}	Номинальное входное напряжение
U _{BX.MNH} U _{BX.MAKC} .	Диапазон входного напряжения
T _{KOPΠ} .	Рабочая температура корпуса
T _{OKP.}	Рабочая температура окружающей среды
НКУ	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	БКЯЮ.436630.052ТУ

3.2. Выходная мощность и ток

Модель	МДМ⁴	МДМ40-Р					МДМ50-Р							
Выходная мощность, Вт	33	3 40				33	50							
Номинальное выходное напряжение, В*	3,3	5	9	12	15	24	27	3,3	5	9	12	15	24	27
Номинальный выходной ток, А	10	8	4,4	3,3	2,7	1,7	1,4	10	10	5,6	4,2	3,3	2,1	1,9

^{*}По согласованию возможно изготовление нестандартных выходных напряжений.

3.3. Индекс номинального входного напряжения

Параметр	Индекс «Б»	Индекс «Ш»			
Номинальное входное напряжение, В	12	24			
Диапазон входного напряжения, В	936	1875			
Диапазон переходного отклонения (1 с), В	940	1784			
Типовой КПД для U _{вых.} =12 В	86%	84%			

4. Основные характеристики

Полное описание характеристик, условиий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр			Значение
Подстройка выходного напряжения			±5% от U _{вых.ном.}
Установившееся отклонение выходного напря	яжения		±2% от U _{вых.ном.}
Нестабильность выходного напряжения	При плавном изі жения и выходн	менении входного напря- ого тока	макс. ±2% от U _{вых.ном.}
	Температурная і	нестабильность	макс. ±3% от U _{вых.ном.}
	Суммарная нест	абильность	макс. ±6% от U _{вых.ном.}
Размах пульсаций (пик-пик)	При токах нагру І _{вых.ном.}	зки с 10% до 100% от	<2% от U _{вых.ном.}
Максимальная ёмкость нагрузки	40 Вт	от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.	4000 мкФ 640 мкФ 200 мкФ
	50 Вт от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.		5000 мкФ 800 мкФ 250 мкФ
Время включения	по команде ДУ [7.1]	<0,1 c
	с момента подач	и U _{BX.}	<1 c
Переходное отклонение выходного напряжения		зном изменении с . _{макс.} (длительность -)	макс. ±10% от U _{вых.ном.}
		зном изменении тока до 100% от Івых.ном. ронта >500 мкс)	
Работа на холостом ходу*	При токах нагру Івых.ном.	зки менее 10% от	€ 1,3 × U _{Bых.ном.}

^{*} При работе на малых нагрузках (менее 10%) и на холостом ходу амплитуда пульсаций выходного напряжения не нормируется. При этом возможно проявление режима «релаксации», т.е. периодического появления и пропадания напряжения на выходе модуля, которое не является браковочным признаком. Длительная эксплуатация модуля в режиме холостого хода не рекомендуется.

4.2. Защиты

Параметр	Значение
Уровень срабатывания защиты от перегрузки	<1,5 × P_{BblX} , плавное снижение U_{BblX} до срабатывания защиты от K3
Защита от короткого замыкания	есть, переход в режим повторного кратковременного включения –режим икания (Hiccup mode)
Защита от перенапряжения на выходе	есть, <1,5 × U _{вых.ном.}
Синусоидальная вибрация	12000 Гц, 200 (20) м/с² (g), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (Т _{ОКР.} =35°C)	98%

4.3. Общие характеристики

Параметр		Значение		
Рабочая температура корпуса	С индексом диапазона «Т»	−60+125 °C		
	С индексом диапазона «М»	−60+90 °C		
Частота преобразования	440 кГц тип. ±5 % (фикс, ШИМ)			
Прочность изоляции (60 с)	вход/выход, вход/корпус, выход/корпус	~500 В, 50 Гц		
Сопротивление изоляции @ =500 В, НКУ	вход/выход, вход/корпус, выход/корпус	не менее 20 МОм		
Тепловое сопротивление корпус - окружающая с	реда	12,5°С/Вт		
Гамма-процентная наработка на отказ, при Y=97,	5% (в типовом режиме)	50 000 ч		
Гарантийный срок эксплуатации	20 лет			
Гарантийный срок хранения		20 лет		

4.4. Конструктивные параметры

Параметр	Значение			
Габаритные размеры	не более 50×30,2×10,25 мм без учета выводов			
Macca	не более 50 г			
Материал корпуса	медь с покрытием хим. никель			
Материал выводов	оловянная бронза			
Условия пайки	260 °C @ 5 c			

5. Функциональные схемы

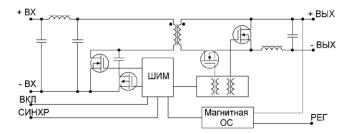


Рис. 1. Функциональная схема МДМ40-Р и МДМ50-Р.

6. Схемы подключения

Рис. 2. Типовая схема подключения.

Описание элементов схемы подключения МДМ40-Р

L1	синфазный дроссель			не менее 8 мГн
C3, C4	керамический конденсатор	Входное напряжение	=12 B =24 B	20 мкФ 10 мкФ
	танталовый конденсатор	Входное напряжение	=12 B =24 B	75 мкФ 33 мкФ
C1, C2, C6, C7, C11, C12	керамический конденсатор	Типовая схема подключения		10000 пФ
C5	танталовый конденсатор	Выходное напряжение	от 3 до 6В вкл. свыше 6 до 15В вкл. свыше 15 до 27В вкл.	300 мкФ 140 мкФ 100 мкФ

Описание элементов схемы подключения МДМ50-Р

L1	синфазный дроссель			не менее 8 мГн
C3, C4	керамический конденсатор	Входное напряжение	=12 B =24 B	20 мкФ 10 мкФ
	танталовый конденсатор	Входное напряжение	=12 B =24 B	68 мкФ 22 мкФ
C1, C2, C6, C7, C11, C12	керамический конденсатор	Типовая схема подключения		10000 пФ
C5	танталовый и алюминиевый конденсатор	Выходное напряжение	от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.	300 мкФ 140 мкФ 20 мкФ и 40 мкФ

6.1. Рекомендуемая топология печатной платы

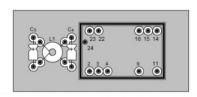


Рис. 3. Вид сверху.

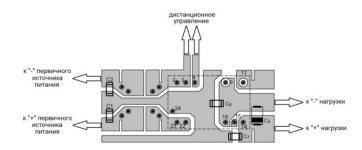


Рис. 4. Вид снизу.

7. Сервисные функции

7.1. Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле [*Puc. 5*], транзистора типа «разомкнутый коллектор» [*Puc. 6*] или оптрона [*Puc. 7*].

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «–ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «–ВХ» и коммутирующий ключ.

Запрещается подача внешнего напряжения уровнем менее 0 В и более 5 В на вывод «ВКЛ» относительно вывода «-ВХ».

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или обрезать.

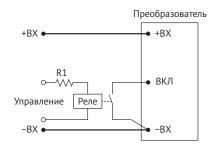


Рис. 5. ВКЛ/ВЫКЛ с помощью реле.

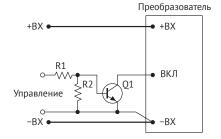


Рис. 6. $BK\Pi/BBIK\Pi$ с помощью биполярного транзистора.

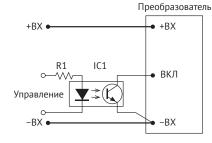


Рис. 7. ВКЛ/ВЫКЛ с помощью оптрона.

7.2. Регулировка

Регулировка выходного напряжения модулей электропитания в диапазоне не менее $\pm 5\%$ может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения [Puc. 8] или к выводу «+ВЫХ» для уменьшения выходного напряжения [Puc. 9].

Сопротивление резистора в цепи согласно [*Puc. 8*] и [*Puc. 9*] указано в *таблице*. Значения сопротивления резистора R1 являются ориентировочными и могут незначительно отличаться от приведенных. Значение тока, протекающего через резистор, до 2 мА.

Рис. 8. Увеличение Ивых.

Рис. 9. Снижение Ивых.

Значение номинала регулировочных резисторов

Номинальное выходное напряжение модуля, В	Сопротивление резистора Rper., кОм, для получения выходного напряжения										
папряжение модуля, в	0,95× U _{ном.}	0,96× U _{ном.}	0,97× U _{ном.}	0,98× U _{ном.}	0,99× U _{ном.}	U _{HOM.}	1,01× U _{HOM.}	1,02× U _{HOM.}	1,03× U _{HOM.}	1,04× U _{HOM.}	1,05× U _{HOM.}
3,3	2	3	5	10	23	∞	77	37	24	18	14
5	5	7	12	21	47	∞	48	21	13	8	6
9	48	63	86	133	275	∞	103	49	31	22	17
12	54	69	95	147	303	∞	76	36	22	16	11
15	64	82	113	173	353	œ	68	32	21	15	11
24	151	194	265	408	835	∞	88	39	23	15	10
27	163	207	281	429	872	∞	84	40	25	18	13

7.3. Сихронизация

Модули имеют вывод двунаправленного сигнала «СИНХР», позволяющий синхронизировать частоту преобразования модулей с помощью внешнего синхросигнала относительно вывода «-BX» [Рис. 10].

При использовании внешнего тактового генератора для синхронизации, амплитуда его тактовых импульсов должна быть в диапазоне от 2 В до 5 В, ширина – не менее 100 нс, а частота следования импульсов синхронизации должна быть на 2-15 % выше, чем их исходная частота преобразования 440 кГц. Более точно частоту преобразования модуля можно определить, измерив частоту следования сигнала на выводе «СИНХР» относительно вывода «-ВХ».

Несколько модулей могут быть также синхронизированы друг с другом простым объединением выводов «СИНХР», как показано на [Рис. 11]. В этой конфигурации все ведомые модули будут синхронизированы в противофазе с одним ведущим модулем. Обычно, ведущим оказывается модуль, у которого сигнал на выводе «СИНХР» появится первым, либо модуль, имеющий наибольшую исходную частоту преобразования.

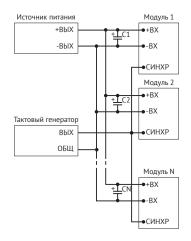
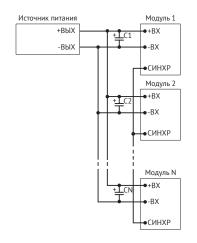
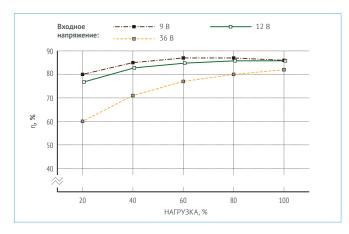


Рис. 10. Пример построения системы с синхронизацией от внешнего тактового генератора.



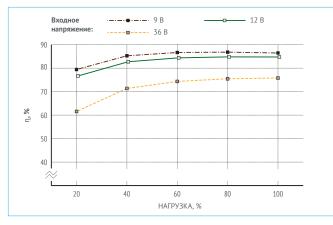

Рис. 11. Пример построения системы с синхронизацией без внешнего тактового генератора.

8. Результаты испытаний

8.1. КПД

На рисунках приведены примеры измерений КПД для модулей МДМ40-Р и МДМ50-Р (с зависимостью от значений входного напряжения и выходной мощности в диапазоне нагрузки 20...100%). Все представленные измерения носят ознакомительный характер и значения могут отличаться для модулей разных партий. Нормированные значения КПД приведены в п.4.3.1.11 ТУ.

8.1.1. Зависимость КПД от нагрузки для МДМ50-Р с индексом входной сети «Б»



напряжение: 36 В 80 70 40 20 40 60 80 100 НАГРУЗКА, %

— 12 B

Рис. 12. МДМ50-1Б3,3ТУР.

Рис. 13. МДМ50-1Б05ТУР.

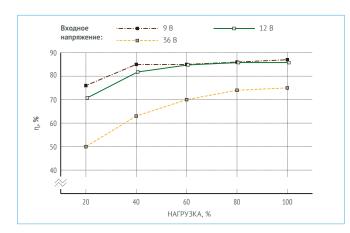
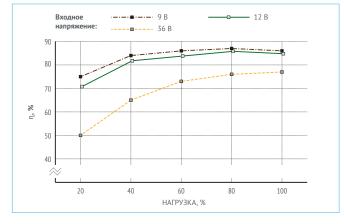



Рис. 14. МДМ50-1Б09ТУР.

Рис. 15. МДМ50-1Б12ТУР.

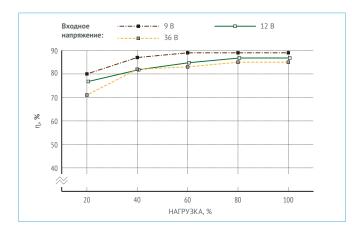


Рис. 16. МДМ50-1Б15ТУР.

Рис. 17. МДМ50-1Б24ТУР.

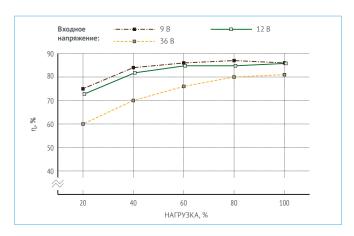


Рис. 18. МДМ50-1Б27ТУР.

8.1.2. Зависимость КПД от нагрузки для МДМ50-Р с индексом входной сети «Ш»

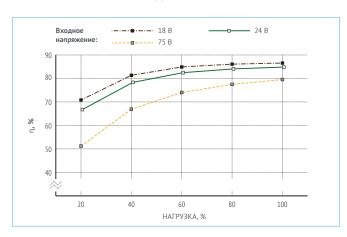


Рис. 19. МДМ50-1Ш3,3ТУР.

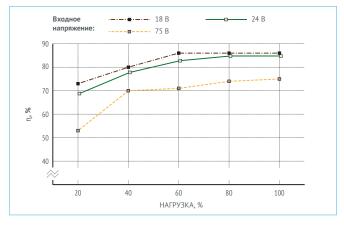


Рис. 21. МДМ50-1Ш09ТУР.

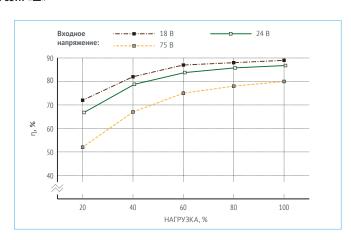


Рис. 20. МДМ50-1Ш05ТУР.

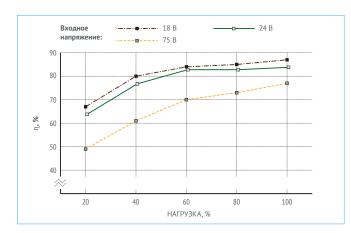
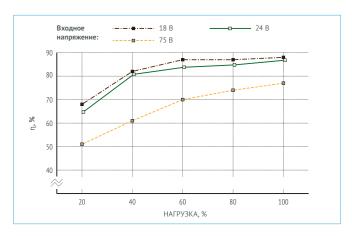



Рис. 22. МДМ50-1Ш12ТУР.

___ 24 B Входное ----- 18 B напряжение: 90 80 60 50 40 20 40 60 80 100 НАГРУЗКА, %

Рис. 23. МДМ50-1Ш15ТУР.

Рис. 24. МДМ50-1Ш24ТУР.

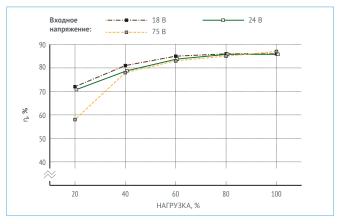


Рис. 25. МДМ50-1Ш27ТУР.

8.2. Ограничение мощности

На [*Puc. 26*], [*Puc. 27*], [*Puc. 28*] и [*Puc. 29*] приведены рекомендации по ограничению мощности нагрузки (20...100%), подключаемой к выходу преобразователя, в зависимости от температуры окружающей среды. Информация является расчетной и показана в виде графиков для преобразователей с разными выходными напряжениями. Спадающие участки кривых соответствуют максимальной температуре корпуса модуля +125 °C (Для температурного диапазона «Т»).

Примечание: ограничение мощности зависит от значения U_{BX} . (КПД), наличия радиатора, условий эксплуатации и может отличаться от значений, приведенных на графиках.

Информация по тепловым характеристикам модуля приведена в п.9.3.7 и табл. 14 ТУ.

Рис. 26. График ограничения мощности от T_{OKP} , без применения внешнего радиатора.

Для модулей МДМ50-1БххТУР с входной сетью «Б», U_{BX} =12 В.

Рис. 28. График ограничения мощности от T_{OKP} , без применения внешнего радиатора.

Для модулей МДМ50-1ШххТУР с входной сетью «Ш», U_{BX} =24 В.

Рис. 27. График ограничения мощности от $T_{OKP.}$ с применением радиатора БКЯЮ.752695.033 (S=74 см²).

Для модулей МДМ50-1БххТУР с входной сетью «Б», U_{BX} =12 В.

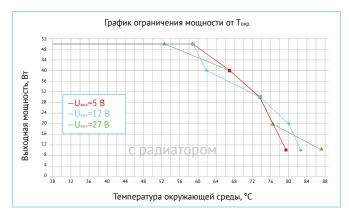


Рис. 29. График ограничения мощности от T_{OKP} . с применением радиатора БКЯЮ.752695.033 (S=74 см²).

Для модулей МДМ50-1ШххТУР с входной сетью «Ш», $U_{\rm BX.}$ =24 В.

8.3. Осциллограммы

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе 4 ТУ.

Имеется база данных с результатами по другим вариациям. Для получения информации, пожалуйста, обратитесь к персональному менеджеру или в службу технической поддержки.

8.3.1. Измерения для МДМ50-1Б15ТУР

Режимы и условия испытаний U_{BX} =12 B, I_{BbiX} =3,3 A, U_{BbiX} =15 B, C_{BbiX} =140 мкФ тантал, НКУ

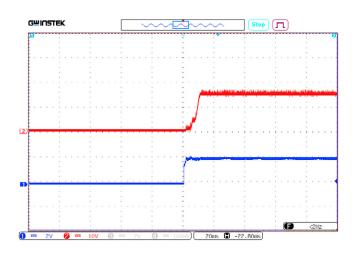
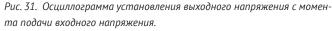
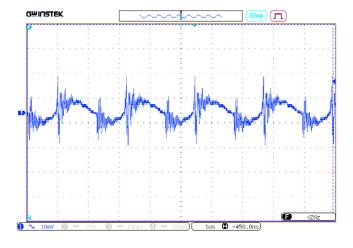
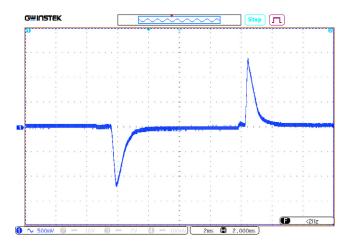




Рис. 30. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий)— напряжение на выводе «ВКЛ». Масштаб 2 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 20 мс/дел.

Луч 1 (синий)— входное напряжение. Масштаб 10 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 20 мс/дел.



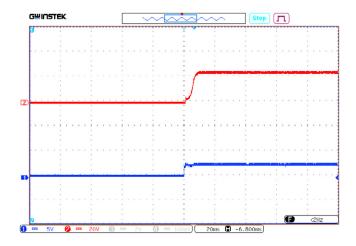
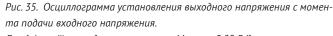

Рис. 32. Осциллограмма пульсаций выходного напряжения. Масштаб 10 мВ/дел. Развертка 1 мкс/дел.

Рис. 33. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %.
Масштаб 500 мВ/дел. Развертка 2 мс/дел.

8.3.2. Измерения для МДМ50-1Ш24ТУР


Режимы и условия испытаний U_{BX} =28 В, $I_{BыX}$ =2,08 А, $U_{BыX}$ =24 В, $C_{BыX}$ =20 мкФ тантал + 40 мкФ электролит, НКУ

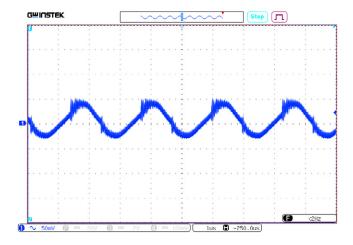

G**™I**NSTEK

Рис. 34. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 20 В/дел. Развертка 20 мс/дел.

Луч 1 (синий) — входное напряжение. Масштаб 20 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 20 В/дел. Развертка 10 мс/дел.

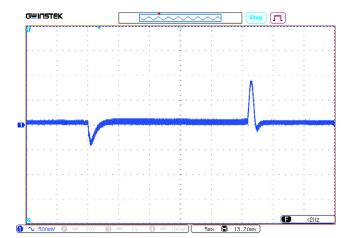
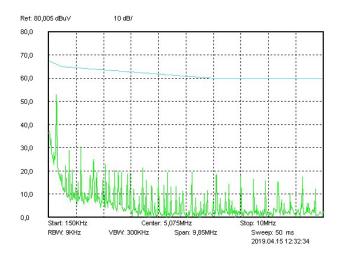


Рис. 36. Осциллограмма пульсаций выходного напряжения. Масштаб 50 мВ/дел. Развертка 1 мкс/дел.


Рис. 37. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %. Масштаб 500 В/дел. Развертка 5 мс/дел.

8.4. Измерения кондуктивных радиопомех (ЭМС)

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе п.4.3.1.20 ТУ. Проверку уровня напряжения радиопомех модулей проводят согласно п.7.4.13 ТУ.

8.4.1. Спектр напряжения радиопомех для МДМ50-1Б27ТУР

Режимы и условия испытаний: $U_{RX} = 12 \text{ B, } U_{RblX} = 27 \text{ B, } I_{RblX} = 1,3 \text{ A, } HKY, при включении согласно схеме [Puc. 2].$

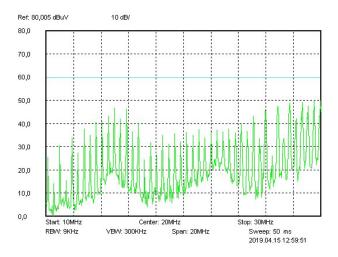
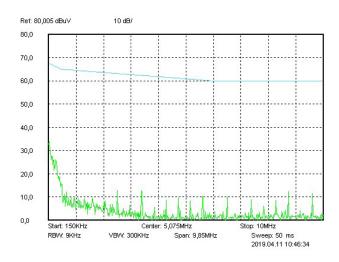



Рис. 38. Диапазон 0,15..10 МГц.

Рис. 39. Диапазон 10..30 МГц.

8.4.2. Спектр напряжения радиопомех для МДМ50-1Ш05ТУР

Режимы и условия испытаний: U_{BX} = 24 B, U_{BbiX} = 5 B, I_{BbiX} = 7 A, HKУ, при включении согласно схеме [Puc. 2].

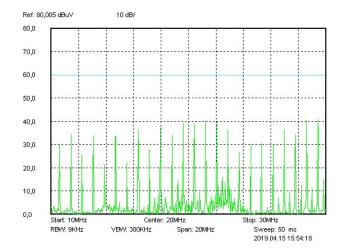


Рис. 40. Диапазон 0,15..10 МГц.

Рис. 41. Диапазон 10..30 МГц.

9. Габаритные чертежи

Вывод	1	2	3	4	5	6	7	8
Назначение	+BX	-BX	вкл	-ВЫХ	+ВЫХ	РЕГ	КОРП	СИНХР

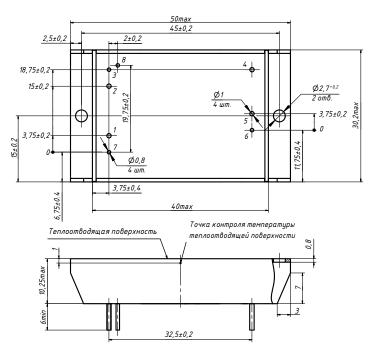


Рис. 42. Исполнение в усиленном корпусе с фланцами для МДМ40-Р, МДМ50-Р.

10. Радиаторы охлаждения

Децимальный номер	Расположение рёбер	Размеры A×B×H×D, мм	Площадь, см²	Масса, г
БКЯЮ.752695.033	Поперечное	50×30×14×4	74	29

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43

Даташит распространяется на следующие модели: МДМ40-153,3МУР, МДМ40-153,3ТУР, МДМ40-1503МУР, МДМ40-1505ТУР, МДМ40-1505ТУР, МДМ40-1609ТУР, МДМ40-1612МУР, МДМ40-1612МУР, МДМ40-1612ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-1615ТУР, МДМ40-16105ТУР, МДМ50-163,3ТУР, МДМ50-163,3ТУР, МДМ50-1653,3ТУР, МДМ50-16105ТУР, МДМ50-16105ТУР

При необходимости изготовления нестандартного исполнения, обращайтесь по номеру тел. +7 473 300-300-5