

МДМ75-Р, МДМ100-Р

Ультракомпактные DC/DC преобразователи

БКЯЮ.436630.052ТУ

1. Описание

Ультракомпактные изолированные DC/DC модули электропитания МДМ-Р для жёстких условий эксплуатации. При небольших габаритах (57,5×33,2×10,25 мм без учёта выводов) максимальная выходная мощность модулей достигает 100 Вт.

Имеют высокую частоту преобразования (ШИМ), расширенный диапазон входного напряжения. При этом модули способны работать в широком диапазоне температур корпуса (–60...+125°C). Они могут включаться и выключаться по команде, имеют полный комплекс защит.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием пыли, влаги или соляного тумана. При изготовлении каждый модуль проходит специальные виды испытаний: климатические, электротермотренировку, многократный визуальный контроль ОТК и измерение электрических параметров на участках РЭА.

1.1. Особенности

- Гарантия 20 лет
- Широкие диапазоны входного напряжения (4:1)
- Выходной ток до 20 А
- Рабочая температура корпуса –60...+125°C
- Магнитная обратная связь без оптронов
- Защита от КЗ и перенапряжения, тепловая защита
- Частота преобразования 350 кГц
- Типовой КПД 87% (Ивых.=12 В)
- Полимерная герметизирующая заливка
- Дистанционное вкл/выкл
- Регулировка выходного напряжения

1.2. Дополнительная информация

1.2.1. Описание на сайте производителя

https://aedon.ru/catalog/dcdc/series/14

1.2.2. Отдел продаж и служба технической поддержки

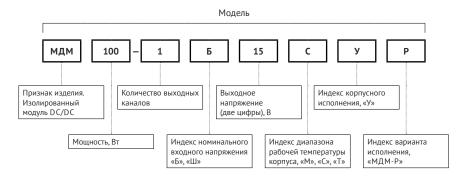
+7 (473) 300-300-5; mail@aedon.ru

1.2.3. 3D модели, footprint для Altium Designer

https://aedon.ru/content/catalog/docs/308,263,273,172,236,171,237,173,238,174,239,365,371,364,372/MДМ-P

1.2.4. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/ https://dzen.ru/aedon/


2. Содержание

1. Описание	1
1.1. Разработаны в соответствии	1
1.2. Особенности	1
1.3. Дополнительная информация	1
2. Содержание	2
3. Информация для заказа	2
3.1. Сокращения	2
3.2. Выходная мощность и ток	3
3.3. Индекс номинального входного напряжения	3
4. Основные характеристики	3
4.1. Выходные характеристики	3
4.2. Защиты	4
4.3. Общие характеристики	4
4.4. Конструктивные параметры	4

5. Функциональные схемы	I
6. Схемы подключения	
6.1. Рекомендуемая топология печатной платы	6
7. Сервисные функции	6
7.1. Дистанционное управление	
7.2. Регулировка	6
7.3. Сихронизация	
8. Результаты испытаний	
8.1. КПД	
8.2. Ограничение мощности	1
8.3. Осциллограммы	
8.4. Измерения кондуктивных радиопомех (ЭМС)	
9. Габаритные чертежи	
10. Радиаторы охлаждения	

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{BыX} .	Выходная мощность
U _{Bых.ном.}	Номинальное выходное напряжение
І _{вых.ном.}	Номинальный выходной ток
І _{вых.мин.}	Минимальный выходной ток
U _{BX.HOM.}	Номинальное входное напряжение
U _{BX.MNH} U _{BX.MAKC} .	Диапазон входного напряжения
T _{KOPΠ} .	Рабочая температура корпуса
T _{OKP.}	Рабочая температура окружающей среды
НКУ	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	БКЯЮ.436630.052ТУ

3.2. Выходная мощность и ток

Модель	МДМ75-Р			мдм1	ļМ100-Р									
Выходная мощность, Вт	66	75						66	100					
Номинальное выходное напряжение, В*	3,3	5	9	12	15	24	27	3,3	5	9	12	15	24	27
Номинальный выходной ток, А	20	15	8,3	6,25	5	3,1	2,7	20	20	11,1	8,3	6,7	4,2	3,7

^{*}По согласованию возможно изготовление нестандартных выходных напряжений.

3.3. Индекс номинального входного напряжения

Параметр	Индекс «Б»	Индекс «Ш»
Номинальное входное напряжение, В	12	24
Диапазон входного напряжения, В	936	1875
Диапазон переходного отклонения (1 с), В	940	1784
Типовой КПД для U _{вых.} =12 В	86%	87%

4. Основные характеристики

Полное описание характеристик, условиий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр	Значение		
Подстройка выходного напряжения	±5% от U _{вых.ном.}		
Установившееся отклонение выходного напря	±2% от U _{вых.ном.}		
Нестабильность выходного напряжения	При плавном изі жения и выходн	менении входного напря- ого тока	макс. ±2% от U _{вых.ном.}
	Температурная і	нестабильность	макс. ±3% от U _{вых.ном.}
	Суммарная нест	абильность	макс. ±6% от U _{вых.ном.}
Размах пульсаций (пик-пик)	При токах нагру І _{вых.ном.}	зки с 10% до 100% от	<2% от U _{вых.ном.}
Максимальная ёмкость нагрузки	75 Вт от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.		7500 мкФ 1200 мкФ 370 мкФ
	100 Вт	от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.	10000 мкФ 1600 мкФ 500 мкФ
Время включения	по команде ДУ [7.1]	<0,1 c
	с момента подач	и U _{BX.}	<1 c
Переходное отклонение выходного напряжения	При скачкообразном изменении с U _{ВХ. МИН} . до U _{ВХ. МАКС.} (длительность фронта >500 мкс)		макс. ±10% от U _{вых.ном.}
При скачкообразном изменении тока нагрузки с 50% до 100% от Івых.ном. (длительность фронта >500 мкс)			
Работа на холостом ходу*	При токах нагру Івых.ном.	зки менее 10% от	≤1,3 × U _{BыX.HOM.}

^{*} При работе на малых нагрузках (менее 10%) и на холостом ходу амплитуда пульсаций выходного напряжения не нормируется. При этом возможно проявление режима «релаксации», т.е. периодического появления и пропадания напряжения на выходе модуля, которое не является браковочным признаком. Длительная эксплуатация модуля в режиме холостого хода не рекомендуется.

4.2. Защиты

Параметр	Значение
Уровень срабатывания защиты от перегрузки	<1,5 × P_{BblX} , плавное снижение U_{BblX} до срабатывания защиты от K3
Защита от короткого замыкания	есть, переход в режим повторного кратковременного включения –режим икания (Hiccup mode)
Защита от перенапряжения на выходе	есть, <1,5 × U _{вых.ном.}
Синусоидальная вибрация	12000 Гц, 200 (20) м/с² (g), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (T _{OKP.} =35°C)	98%

4.3. Общие характеристики

Параметр		Значение
Рабочая температура корпуса	С индексом диапазона «Т» (для моделей мощностью 75 Вт)	−60+125°C
	С индексом диапазона «С» (для моделей мощностью 100 Вт)	−60+115 °C
	С индексом диапазона «М»	−60+90 °C
Частота преобразования		350 кГц тип. ±5 % (фикс, ШИМ)
Прочность изоляции (60 с)	вход/выход, вход/корпус, выход/корпус	~500 В, 50 Гц
Сопротивление изоляции @ =500 В, НКУ вход/выход, вход/корпус, выход/корпус		не менее 20 МОм
Тепловое сопротивление корпус - окружающая о	среда	8,7 °C/BT
Гамма-процентная наработка на отказ, при Y=97	50 000 ч	
Гарантийный срок эксплуатации	20 лет	
Гарантийный срок хранения		20 лет

4.4. Конструктивные параметры

Параметр	Значение
Габаритные размеры	не более 57,5×33,2×10,25 мм без учета выводов
Macca	не более 65 г
Материал корпуса	медь с покрытием хим. никель
Материал выводов	оловянная бронза
Условия пайки	260 °C @ 5 c

5. Функциональные схемы

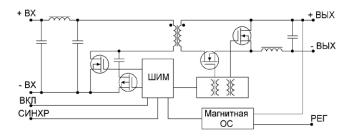


Рис. 1. Функциональная схема МДМ75-Р и МДМ100-Р.

6. Схемы подключения

Рис. 2. Типовая схема подключения.

Описание элементов схемы подключения МДМ75-Р

L1	синфазный дроссель			не менее 8 мГн
C3, C4	керамический конденсатор	Входное напряжение	=12 B =24 B	20 мкФ 10 мкФ
	танталовый конденсатор	Входное напряжение	=12 B =24 B	110 мкФ 55 мкФ
C1, C2, C6, C7, C11, C12	керамический конденсатор	Типовая схема подключения		10000 пФ
C5	танталовый и алюминиевый конденсатор	Выходное напряжение	от 3 до 6В вкл. свыше 6 до 15В вкл. свыше 15 до 27В вкл.	400 мкФ 200 мкФ 30 и 68 мкФ

Описание элементов схемы подключения МДМ100-Р

L1	синфазный дроссель			не менее 8 мГн
C3, C4	керамический конденсатор	Входное напряжение	=12 B =24 B	30 мкФ 15 мкФ
	танталовый конденсатор	Входное напряжение	=12 B =24 B	120 мкФ 68 мкФ
C1, C2, C6, C7, C11, C12	керамический конденсатор	Типовая схема подключения	10000 пФ	

конденсатор напряжение свыше 6 до 15 в вкл. 200 мкФ	C5	танталовый и алюминиевый конденсатор	Выходное напряжение	от 3 до 6В вкл. свыше 6 до 15В вкл. свыше 15 до 27В вкл.	440 мкФ 200 мкФ 30 и 68 мкФ
---	----	---	------------------------	--	-----------------------------------

6.1. Рекомендуемая топология печатной платы

Рис. 3. Вид сверху.

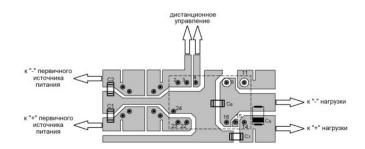


Рис. 4. Вид снизу.

7. Сервисные функции

7.1. Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле [Рис. 5], транзистора типа «разомкнутый коллектор» [Рис. 6] или оптрона [Рис. 7].

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «-ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «-ВХ» и коммутирующий ключ.

Запрещается подача внешнего напряжения уровнем менее 0 В и более 5 В на вывод «ВКЛ» относительно вывода «-ВХ».

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или обрезать.

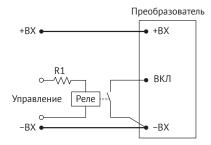


Рис. 5. ВКЛ/ВЫКЛ с помощью реле.

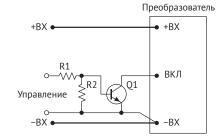


Рис. 6. ВКЛ/ВЫКЛ с помощью биполярного транзистора.

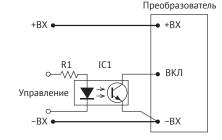


Рис. 7. ВКЛ/ВЫКЛ с помощью оптрона.

7.2. Регулировка

Регулировка выходного напряжения модулей электропитания в диапазоне не менее ±5% может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения [Puc. 8] или к выводу «+ВЫХ» для уменьшения выходного напряжения [Рис. 9].

Сопротивление резистора в цепи согласно [Рис. 8] и [Рис. 9] указано в таблице. Значения сопротивления резистора R1 являются ориентировочными и могут незначительно отличаться от приведенных. Значение тока, протекающего через резистор, до 2 мА.

Рис. 8. Увеличение Ивых.

Рис. 9. Снижение Ивых.

Значение номинала регулировочных резисторов

Номинальное выходное напряжение модуля, В	Сопротивление резистора Rper., кОм, для получения выходного напряжения										
	0,95× U _{ном.}	0,96× U _{ном.}	0,97× U _{ном.}	0,98× U _{ном.}	0,99× U _{ном.}	U _{HOM.}	1,01× U _{HOM.}	1,02× U _{HOM.}	1,03× U _{HOM.}	1,04× U _{HOM.}	1,05× U _{HOM.}
3,3	2	3	5	10	23	∞	77	37	24	18	14
5	5	7	12	21	47	∞	48	21	13	8	6
9	48	62	86	133	275	∞	103	49	31	22	17
12	54	69	95	147	303	∞	76	36	22	16	11
15	63	81	111	171	351	œ	67	31	19	13	10
24	151	194	265	408	835	∞	88	39	23	15	10
27	158	202	276	424	868	∞	78	34	19	12	8

7.3. Сихронизация

Модули имеют вывод двунаправленного сигнала «СИНХР», позволяющий синхронизировать частоту преобразования модулей с помощью внешнего синхросигнала относительно вывода «-BX» [Рис. 10].

При использовании внешнего тактового генератора для синхронизации, амплитуда его тактовых импульсов должна быть в диапазоне от 2 В до 5 В, ширина – не менее 100 нс, а частота следования импульсов синхронизации должна быть на 2-15 % выше, чем их исходная частота преобразования 350 кГц. Более точно частоту преобразования модуля можно определить, измерив частоту следования сигнала на выводе «СИНХР» относительно вывода «-ВХ».

Несколько модулей могут быть также синхронизированы друг с другом простым объединением выводов «СИНХР», как показано на [Рис. 11]. В этой конфигурации все ведомые модули будут синхронизированы в противофазе с одним ведущим модулем. Обычно, ведущим оказывается модуль, у которого сигнал на выводе «СИНХР» появится первым, либо модуль, имеющий наибольшую исходную частоту преобразования.

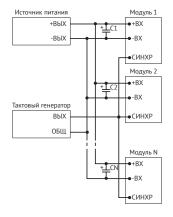


Рис. 10. Пример построения системы с синхронизацией от внешнего тактового генератора.

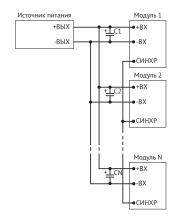


Рис. 11. Пример построения системы, с синхронизацией без внешнего тактового генератора.

8. Результаты испытаний

8.1. КПД

На рисунках приведены примеры измерений КПД для модулей МДМ75-Р и МДМ100-Р (с зависимостью от значений входного напряжения и выходной мощности в диапазоне нагрузки 20...100%). Все представленные измерения носят ознакомительный характер и значения могут отличаться для модулей разных партий. Нормированные значения КПД приведены в п.4.3.1.11 ТУ.

8.1.1. Зависимость КПД от нагрузки для МДМ100-Р с индексом входной сети «Б»

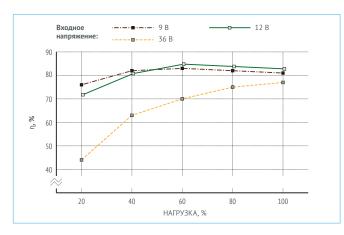


Рис. 12. МДМ100-1Б3,3СУР (66 Вт макс.).

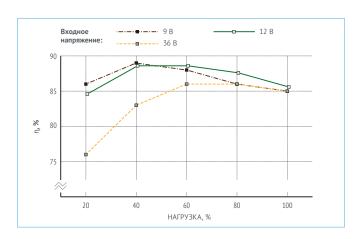


Рис. 13. МДМ100-1Б05СУР.

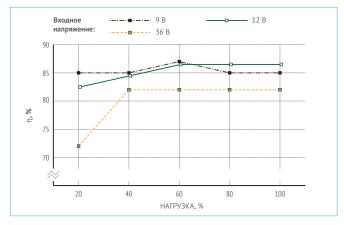


Рис. 14. МДМ100-1Б09СУР.

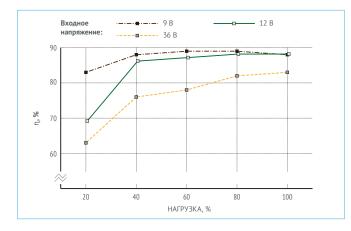


Рис. 15. МДМ100-1Б12СУР.

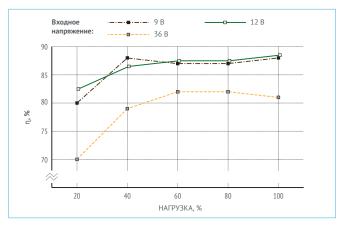


Рис. 16. МДМ100-1Б15СУР.

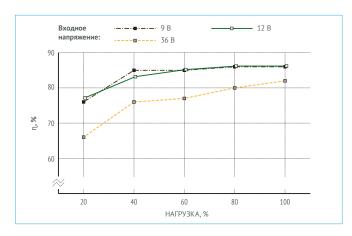


Рис. 18. МДМ100-1Б27СУР.

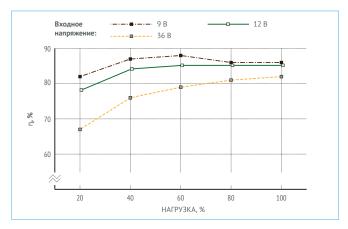


Рис. 17. МДМ100-1Б24СУР.

8.1.2. Зависимость КПД от нагрузки для МДМ100-Р с индексом входной сети «Ш»

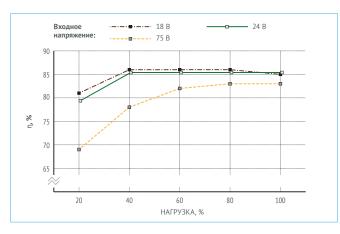


Рис. 19. МДМ100-1Ш3,3СУР (66 Вт макс.).

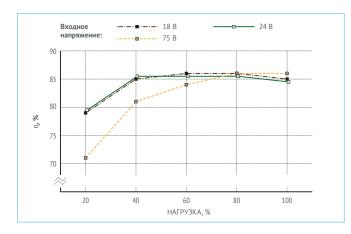


Рис. 20. МДМ100-1Ш05СУР.

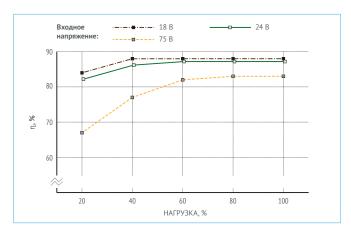


Рис. 21. МДМ100-1Ш09СУР.

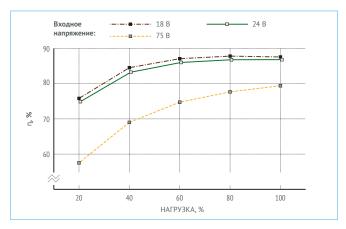


Рис. 23. МДМ100-1Ш15СУР.

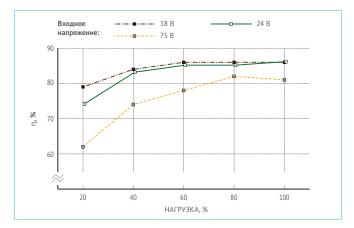


Рис. 25. МДМ100-1Ш27СУР.

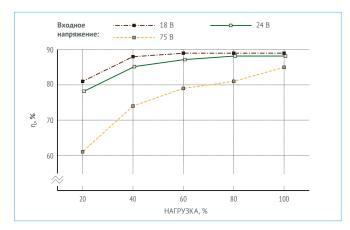


Рис. 22. МДМ100-1Ш12СУР.

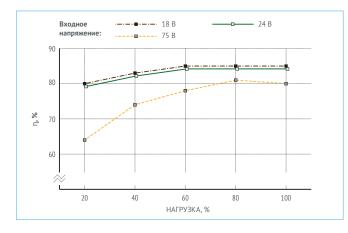


Рис. 24. МДМ100-1Ш24СУР.

8.2. Ограничение мощности

На [*Puc. 26*] и [*Puc. 27*] приведены рекомендации по ограничению мощности нагрузки (20...100%), подключаемой к выходу преобразователя, в зависимости от температуры окружающей среды. Информация является расчетной и показана в виде графиков для преобразователей с разными выходными напряжениями с использованием внешних радиаторов (без и с принудительным обдувом). Спадающие участки кривых соответствуют максимальной температуре корпуса модуля +115 °C (Для температурного диапазона «С»).

Примечание: ограничение мощности зависит от значения U_{BX} . (КПД), наличия радиатора, условий эксплуатации и может отличаться от значений, приведенных на графиках. Не допускается использовать модули без радиаторов или теплораспределяющего основания (толщиной > 4 мм). Информация по тепловым характеристикам модуля приведена в п.9.3.7 и табл. 14 ТУ.

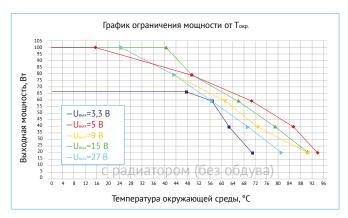


Рис. 26. График ограничения мощности от $T_{OKP.}$ с применением внешнего радиатора БКЯЮ.752695.054-01 (S=163 см²) **без принудительного обдува**.

Для модулей МДМ100-1ExxСУР с входной сетью «E», U_{BX} =12 E.

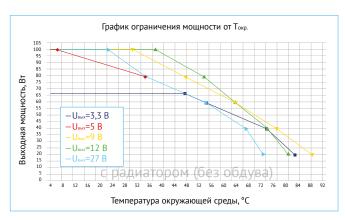


Рис. 28. График ограничения мощности от $T_{OKP.}$ с применением внешнего радиатора БКЯЮ.752695.054-01 (S=163 см²) **без принудительного обдува**.

Для модулей МДМ100-1ШххСУР с входной сетью «Ш», U_{BX} =24 В.

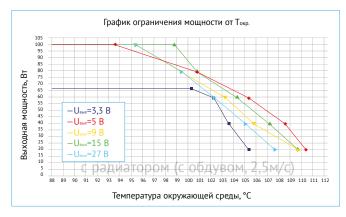


Рис. 27. График ограничения мощности от $T_{\rm OKP.}$ с применением внешнего радиатора БКЯЮ.752695.262-01 (S=170 см²) с принудительным обдувом, скорость воздушного потока 2,5 м/с.

Для модулей МДМ100-15ххСУР с входной сетью «5», U_{BX} =12 B.

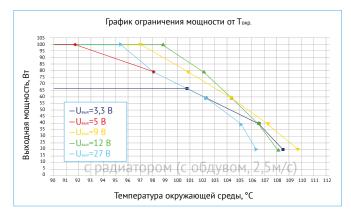


Рис. 29. График ограничения мощности от $T_{\rm OKP}$ с применением внешнего радиатора БКЯЮ.752695.262-01 (S=170 см²) с принудительным обдувом, скорость воздушного потока **2,5 м/с**.

Для модулей МДМ100-1ШххСУР с входной сетью «Ш», U_{BX} =24 В.

8.3. Осциллограммы

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе 4 ТУ.

Имеется база данных с результатами по другим вариациям. Для получения информации, пожалуйста, обратитесь к персональному менеджеру или в службу технической поддержки.

8.3.1. Измерения для МДМ100-1Б12СУР

Режимы и условия испытаний U_{BX} =12 B, I_{BbiX} =8,3 A, U_{BbiX} =12 B, C_{BbiX} =200 мкФ тантал, НКУ

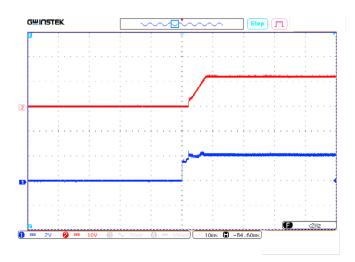


Рис. 30. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий)— напряжение на выводе «ВКЛ». Масштаб 2 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 10 мс/дел.

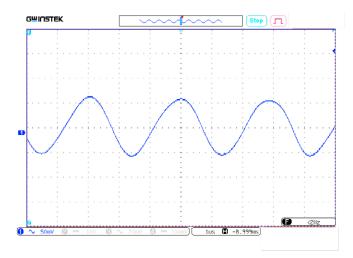


Рис. 32. Осциллограмма пульсаций выходного напряжения. Масштаб 50 мВ/дел. Развертка 1 мкс/дел.

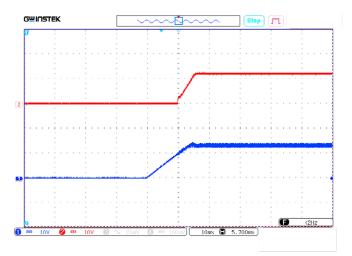
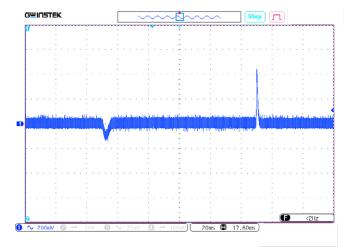
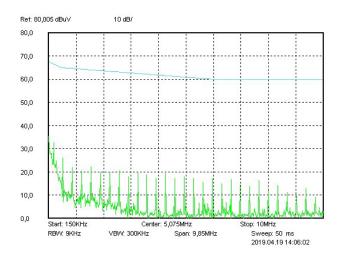


Рис. 31. Осциплограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий)— входное напряжение. Масштаб 10 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 10 мс/дел.




Рис. 33. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %.
Масштаб 200 мВ/дел. Развертка 20 мс/дел.

8.4. Измерения кондуктивных радиопомех (ЭМС)

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе п.4.3.1.20 ТУ. Проверку уровня напряжения радиопомех модулей проводят согласно п.7.4.13 ТУ.

8.4.1. Спектр напряжения радиопомех для МДМ100-1Б12СУР

Режимы и условия испытаний: $U_{RX} = 12 \text{ B, } U_{RblX} = 12 \text{ B, } I_{RblX} = 5,8 \text{ A, HKY, при включении согласно схеме [Puc. 2].}$

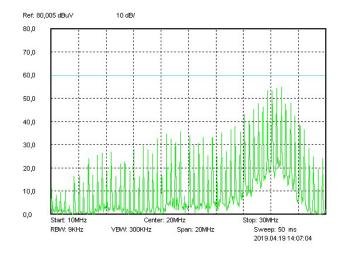
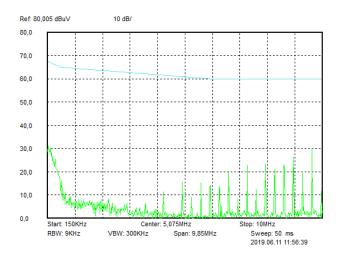



Рис. 34. Диапазон 0,15..10 МГц.

Рис. 35. Диапазон 10..30 МГц.

8.4.2. Спектр напряжения радиопомех для МДМ100-1Ш24СУР

Режимы и условия испытаний: $U_{B.X.}$ =24 В, $U_{B.b.X.}$ =24 В $I_{B.b.X.}$ =3 А, НКУ, при включении согласно схеме [*Puc. 2*].

Ref. 80,005 dBuV 10 dB/

80,0

70,0

60,0

40,0

30,0

20,0

10,0

Start: 10MHz
RBW: 9KHz
VBW: 300KHz
Span: 20MHz
Sweep: 50 ms
2015.06.11 11:58:28

Рис. 36. Диапазон 0,15..10 МГц.

Рис. 37. Диапазон 10..30 МГц.

9. Габаритные чертежи

Вывод	1	2	3	4	5	6	7	8
Назначение	+BX	-BX	ВКЛ	+ВЫХ	-ВЫХ	РЕГ	КОРП	СИНХР

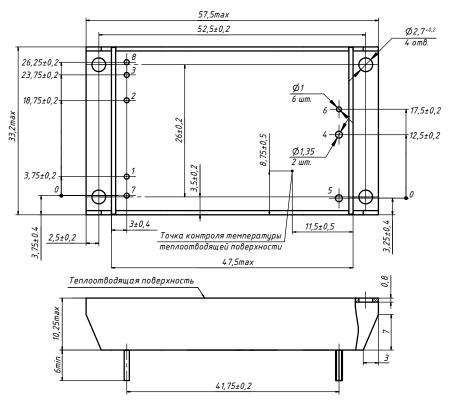
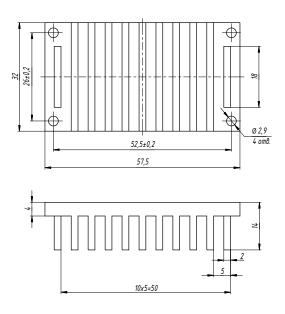
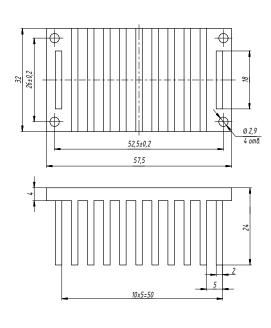



Рис. 38. Исполнение в усиленном корпусе с фланцами для МДМ75-Р, МДМ100-Р.

10. Радиаторы охлаждения


Децимальный номер	Расположение рёбер	Размеры A×B×H×D, мм	Площадь, см²	Масса, г
БКЯЮ.752695.054	Поперечное	57,5×32×14×4	94	38
БКЯЮ.752695.262	Продольное	57,5×32×14×4	97	39
БКЯЮ.752695.054-01	Поперечное	57,5×32×24×4	163	55
БКЯЮ.752695.262-01	Продольное	57,5×32×24×4	170	58

52,5±0,2 57,5

Рис. 40. БКЯЮ.752695.262.

Рис. 39. БКЯЮ.752695.054.

Ø 2,9 4 om8. 26±0,2 52,5±0,2 57,5

Рис. 42. БКЯЮ.752695.262-01.

Рис. 41. БКЯЮ.752695.054-01.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43

Даташит распространяется на следующие модели: МДМ75-163,3МУР, МДМ75-163,3ТУР, МДМ75-165МУР, МДМ75-165ТУР, МДМ75-165ТУР, МДМ75-1612ТУР, МДМ75-1612ТУР, МДМ75-1612ТУР, МДМ75-1615ТУР, МДМ100-163,3МУР, МДМ

При необходимости изготовления нестандартного исполнения, обращайтесь по номеру тел. +7 473 300-300-5