

МДМ6-Р, МДМ10-Р

Ультракомпактные DC/DC преобразователи

БКЯЮ.436630.052ТУ

1. Описание

Ультракомпактные изолированные DC/DC модули электропитания МДМ-Р для жёстких условий эксплуатации. При небольших габаритах (24,1×14×8,5 мм без учёта выводов) максимальная выходная мощность модулей достигает 10 Вт.

Имеют высокую частоту преобразования (ШИМ), расширенный диапазон входного напряжения. При этом модули способны работать в широком диапазоне температур корпуса (–60...+125°C). Они могут включаться и выключаться по команде, имеют полный комплекс зашит.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием пыли, влаги или соляного тумана. При изготовлении каждый модуль проходит специальные виды испытаний: климатические, электротермотренировку, многократный визуальный контроль ОТК и измерение электрических параметров на участках РЭА.

1.1. Особенности

- Гарантия 20 лет
- Широкие диапазоны входного напряжения (2:1)
- Выходной ток до 2 А
- Рабочая температура корпуса 60...+125°C
- Магнитная обратная связь без оптронов
- Защита от КЗ и перенапряжения
- Частота преобразования 540 кГц
- Типовой КПД 84% (Ивых.=12 В)
- Полимерная герметизирующая заливка
- Дистанционное вкл/выкл

1.2. Дополнительная информация

1.2.1. Описание на сайте производителя

https://aedon.ru/catalog/dcdc/series/14

1.2.2. Отдел продаж и служба технической поддержки

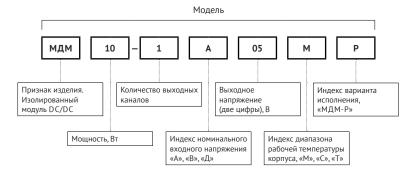
+7 (473) 300-300-5; mail@aedon.ru

1.2.3. 3D модели, footprint для Altium Designer

https://aedon.ru/content/catalog/docs/308,263,273,172,236,171,237,173, 238,174,239,365,371,364,372/МДМ-Р

1.2.4. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/ https://dzen.ru/aedon/


2. Содержание

1. Описание	1
1.1. Разработаны в соответствии	
1.2. Особенности	1
1.3. Дополнительная информация	1
2. Содержание	2
3. Информация для заказа	
3.1. Сокращения	
3.2. Выходная мощность и ток	
3.3. Индекс номинального входного напряжения	
4. Основные характеристики	
4.1. Выходные характеристики	
4.2. Защиты	
4.3. Общие уарактеристики	Δ

4.4. Конструктивные параметры	4
5. Функциональные схемы	5
6. Схемы подключения	5
6.1. Рекомендуемая топология печатной платы	6
7. Сервисные функции	6
7.1. Дистанционное управление	6
8. Результаты испытаний	7
8.1. КПД	7
8.2. Ограничение мощности	13
0.7.0	14
8.3. Осциллограммы	
8.5. Осциллограммы	19

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{BыX} .	Выходная мощность
U _{Bых.ном.}	Номинальное выходное напряжение
І _{вых.ном.}	Номинальный выходной ток
І _{вых.мин.}	Минимальный выходной ток
U _{BX.HOM.}	Номинальное входное напряжение
U _{BX.MNH} U _{BX.MAKC} .	Диапазон входного напряжения
T _{KOPN} .	Рабочая температура корпуса
T _{OKP.}	Рабочая температура окружающей среды
НКУ	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	БКЯЮ.436630.052ТУ

3.2. Выходная мощность и ток

Модель	мдм6-Р				мдм10-Р									
Выходная мощность, Вт	3,96	3,96 6				6,6	10							
Номинальное выходное напряжение, В*	3,3	5	9	12	15	24	27	3,3	5	9	12	15	24	27
Номинальный выходной ток, А	1,2	1,2	0,66	0,5	0,4	0,25	0,22	2	2	1,1	0,83	0,66	0,41	0,37

^{*}По согласованию возможно изготовление нестандартных выходных напряжений.

3.3. Индекс номинального входного напряжения

Параметр	Индекс «А»	Индекс «В»	Индекс «Д»
Номинальное входное напряжение, В	12	27	48
Диапазон входного напряжения, В	918	1736	3675
Диапазон переходного отклонения (1 с), В	918	1740	3684
Типовой КПД для U _{выхвых} =12 В	84%	85%	86%

4. Основные характеристики

Полное описание характеристик, условиий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр	Значение		
Подстройка выходного напряжения			нет
Установившееся отклонение выходного напряжения			±2% от U _{вых.ном.}
Нестабильность выходного напряжения	При плавном изм жения и выходно	иенении входного напря- ого тока	макс. ±2% от U _{вых.ном.}
	Температурная н	нестабильность	макс. ±3% от U _{вых.ном.}
	Суммарная неста	абильность	макс. ±6% от U _{вых.ном.}
Размах пульсаций (пик-пик)	При токах нагру: І _{вых.ном.}	вки с 10% до 100% от	<2% от U _{вых.ном.}
Максимальная ёмкость нагрузки	6 Вт	от 3 до 6В вкл. свыше 6 до 15В вкл. свыше 15 до 27В вкл.	630 мкФ 100 мкФ 50 мкФ
	10 Вт от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.		1000 мкФ 160 мкФ 80 мкФ
Время включения	по команде ДУ [7	7.1]	<0,1 c
	с момента подач	и U _{вх.}	<1 c
Переходное отклонение выходного напряжения	При скачкообразном изменении с U _{BX. МИН.} до U _{BX. МАКС.} (длительность фронта >500 мкс)		макс. ±10% от U _{вых.ном.}
	При скачкообразном изменении тока нагрузки с 50% до 100% от Івых.ном. (длительность фронта >500 мкс)		
Работа на холостом ходу*	При токах нагру: Івых.ном.	вки менее 10% от	≤ 1,3 × U _{Bых.ном.}

^{*} При работе на малых нагрузках (менее 10%) и на холостом ходу амплитуда пульсаций выходного напряжения не нормируется. При этом возможно проявление режима «релаксации», т.е. периодического появления и пропадания напряжения на выходе модуля, которое не является браковочным признаком. Длительная эксплуатация модуля в режиме холостого хода не рекомендуется.

4.2. Защиты

Параметр	Значение
Уровень срабатывания защиты от перегрузки	<2,7 × $P_{B \text{M.X.}}$, плавное снижение $U_{B \text{M.X.}}$ до срабатывания защиты от K3
Защита от короткого замыкания	есть, переход в режим повторного кратковременного включения –режим икания (Hiccup mode)
Защита от перенапряжения на выходе	есть, <1,5 × U _{вых.ном.}
Синусоидальная вибрация	12000 Гц, 200 (20) м/c² (g), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (T _{OKP.} =35°C)	98%

4.3. Общие характеристики

Параметр	Параметр			
Рабочая температура корпуса	С индексом диапазона «Т» (для моделей мощностью 6 Вт)	-60+125 °C		
	С индексом диапазона «С» (для моделей мощностью 10 Вт)	-60+115 °C		
	С индексом диапазона «М»	-60+90 °C		
Частота преобразования	540 кГц тип. ±5 % (фикс, ШИМ)			
Прочность изоляции (60 с)	вход/выход, вход/корпус, выход/корпус	~500 В, 50 Гц		
Сопротивление изоляции @ =500 В, НКУ	вход/выход, вход/корпус, выход/корпус	не менее 20 МОм		
Тепловое сопротивление корпус - окружающая (среда	28°С/Вт		
Гамма-процентная наработка на отказ, при Y=97	50 000 ч			
Гарантийный срок эксплуатации	20 лет			
Гарантийный срок хранения		20 лет		

4.4. Конструктивные параметры

Параметр	Значение
Габаритные размеры	не более 24,1×14×8,5 мм без учета выводов
Macca	не более 20 г
Материал корпуса	медь с покрытием хим. никель
Материал выводов	оловянная бронза
Условия пайки	260 °C @ 5 c

5. Функциональные схемы

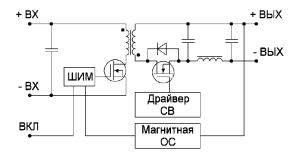
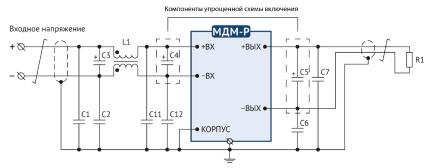



Рис. 1. Функциональная схема МДМ6-Р и МДМ10-Р.

6. Схемы подключения

Конденсатор С4 является обязательным элементом схемы включения

Рис. 2. Типовая схема подключения.

Описание элементов схемы подключения МДМ6-Р

L1	синфазный дроссель			не менее 8 мГн
C3, C4	керамический конденсатор	Входное напряжение	=12 B =24 B =48 B	10 мкФ 4,7 мкФ 1 мкФ
	танталовый конденсатор	Входное напряжение	=12 B =24 B =48 B	6,8 мкФ 3,3 мкФ 1,5 мкФ
C1, C2, C6, C7, C11, C12	керамический конденсатор	Типовая схема подключения		10000 пФ
C5	танталовый конденсатор	Выходное напряжение	от 3 до 6В вкл. свыше 6 до 15В вкл. свыше 15 до 27В вкл.	75 мкФ 33 мкФ 24 мкФ

Описание элементов схемы подключения МДМ10-Р

L1	синфазный дроссель			не менее 8 мГн
C3, C4	керамический конденсатор	Входное напряжение	=12 B =24 B =48 B	15 мкФ 4,7 мкФ 2,2 мкФ
	танталовый конденсатор	Входное напряжение	=12 B =24 B =48 B	15 мкФ 6,8 мкФ 3,3 мкФ
C1, C2, C6, C7, C11, C12	керамический конденсатор	Типовая схема подключения		10000 пФ
C5	танталовый конденсатор	Выходное напряжение	от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 27 В вкл.	120 мкФ 56 мкФ 40 мкФ

6.1. Рекомендуемая топология печатной платы

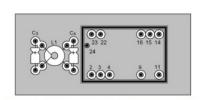


Рис. 3. Вид сверху.

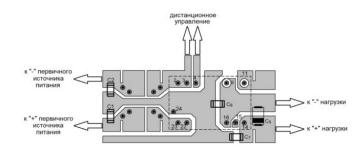


Рис. 4. Вид снизу.

7. Сервисные функции

7.1. Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле [Рис. 5], транзистора типа «разомкнутый коллектор» [Рис. 6] или оптрона [Рис. 7].

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «- ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «-ВХ» и коммутирующий ключ.

Запрещается подача внешнего напряжения уровнем менее 0 В и более 5 В на вывод «ВКЛ» относительно вывода «-ВХ».

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или обрезать.

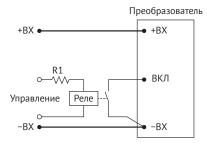


Рис. 5. ВКЛ/ВЫКЛ с помощью реле.

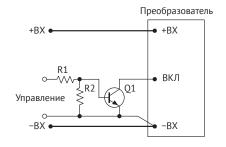
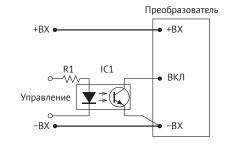
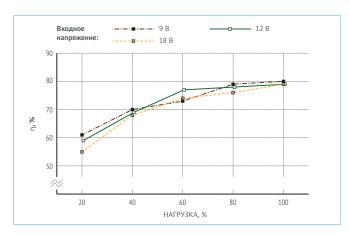


Рис. 6. ВКЛ/ВЫКЛ с помощью биполярного транзистора.

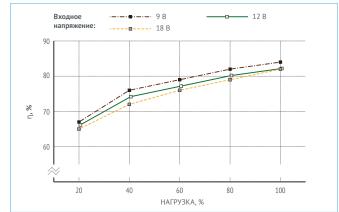



Рис. 7. ВКЛ/ВЫКЛ с помощью оптрона.

8. Результаты испытаний

8.1. КПД

На рисунках приведены примеры измерений КПД для модулей МДМ6-Р и МДМ10-Р (с зависимостью от значений входного напряжения и выходной мощности в диапазоне нагрузки 20...100%). Все представленные измерения носят ознакомительный характер и значения могут отличаться для модулей разных партий. Нормированные значения КПД приведены в п.4.3.1.11 ТУ.


8.1.1. Зависимость КПД от нагрузки для МДМ6-Р с индексом входной сети «А»

----- 9 B Входное ---- 18 B 80 70 60 40 60 80 100 НАГРУЗКА, %

Рис. 8. МДМ6-1А3,3ТР.

Рис. 9. МДМ6-1А05ТР.

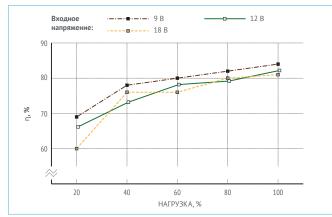
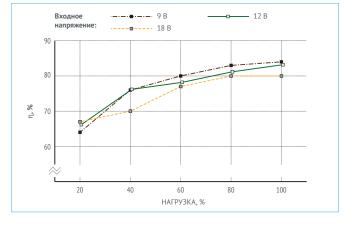



Рис. 10. МДМ6-1А09ТР.

Рис. 11. МДМ6-1А12ТР.

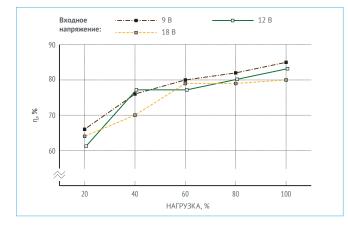


Рис. 12. МДМ6-1А15ТР.

Рис. 13. МДМ6-1А24ТР.

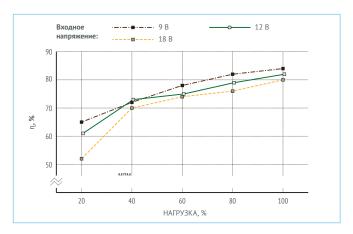
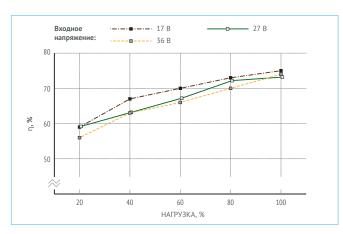
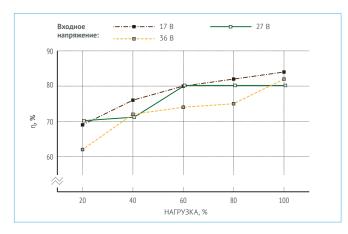



Рис. 14. МДМ6-1А27ТР.


8.1.2. Зависимость КПД от нагрузки для МДМ6-Р с индексом входной сети «В»

---- 17 B — 27 B Входное напряжение: ---- 36 B 80 60 60 100 НАГРУЗКА, %

Рис. 15. МДМ6-1В3,3ТР.

Рис. 16. МДМ6-1В05ТР

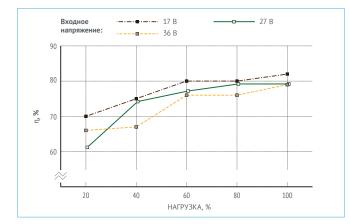
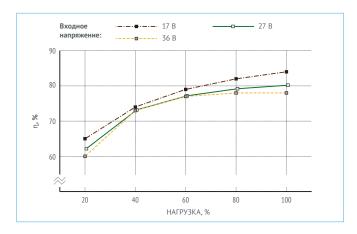



Рис. 17. МДМ6-1В09ТР.

Рис. 18. МДМ6-1В12ТР.

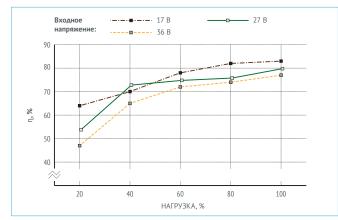
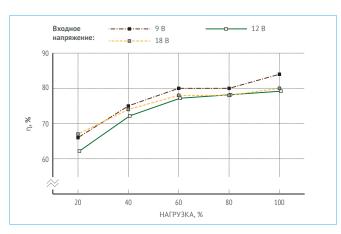



Рис. 19. МДМ6-1В15ТР.

Рис. 20. МДМ6-1В24ТР.

8.1.3. Зависимость КПД от нагрузки для МДМ10-Р с индексом входной сети «А»

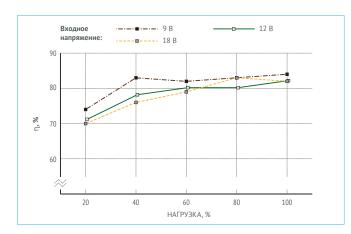
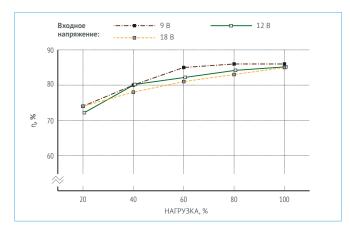



Рис. 21. МДМ10-1А3,3СР (6,6Вт макс.).

Рис. 22. МДМ10-1А05СР.

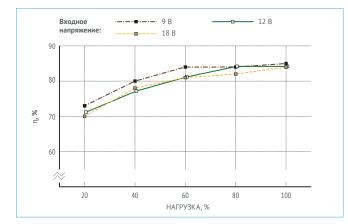


Рис. 23. МДМ10-1А09СР.

Рис. 24. МДМ10-1А12СР.

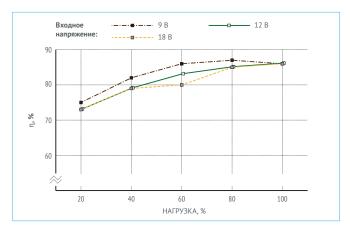


Рис. 25. МДМ10-1А15СР.

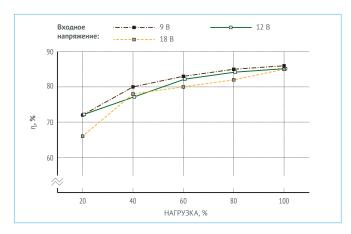


Рис. 26. МДМ10-1А24СР.

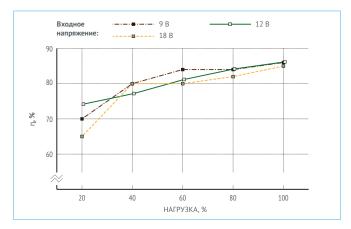


Рис. 27. МДМ10-1А27СР.

8.1.4. Зависимость КПД от нагрузки для МДМ10-Р с индексом входной сети «В»

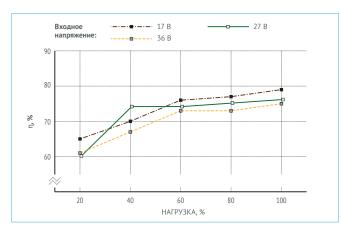


Рис. 28. МДМ10-1В3,3СР (6,6Вт макс.).

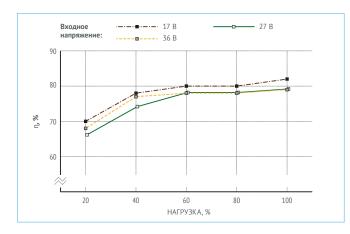


Рис. 29. МДМ10-1В05СР.

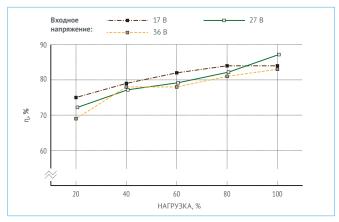


Рис. 30. МДМ10-1В09СР.

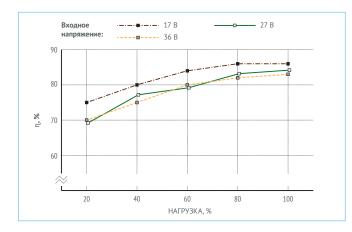


Рис. 31. МДМ10-1В12СР.

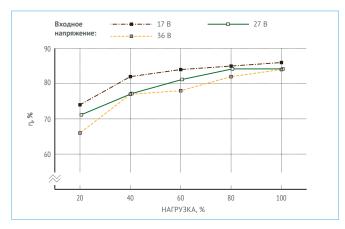


Рис. 32. МДМ10-1В15СР.

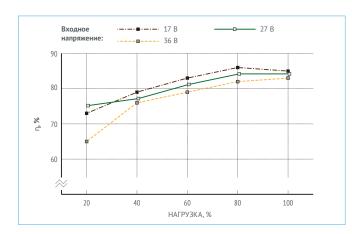


Рис. 33. МДМ10-1В24СР.

8.1.5. Зависимость КПД от нагрузки для МДМ10-Р с индексом входной сети «Д»

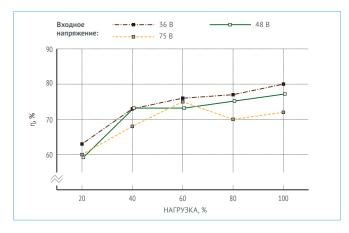


Рис. 34. МДМ10-1Д3,3СР (6,6Вт макс.).

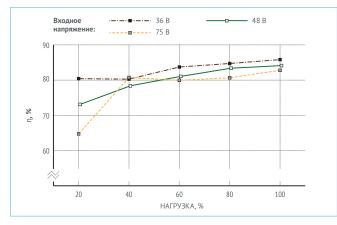


Рис. 35. МДМ10-1Д09СР.

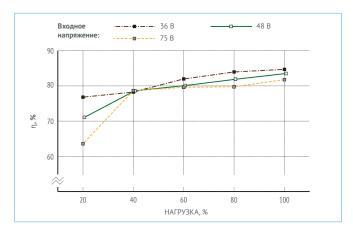


Рис. 36. МДМ10-1Д12СР.

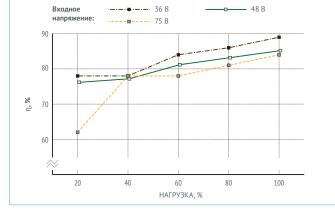


Рис. 37. МДМ10-1Д15СР.

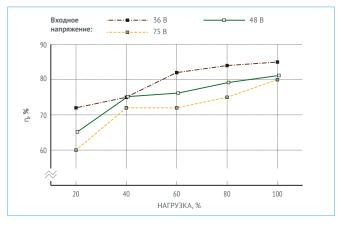


Рис. 38. МДМ10-1Д24СР.



Рис. 39. МДМ10-1Д27СР.

8.2. Ограничение мощности

На [*Puc. 40*] и [*Puc. 41*] приведены рекомендации по ограничению мощности нагрузки (20...100%), подключаемой к выходу преобразователя, в зависимости от температуры окружающей среды. Информация является расчетной и показана в виде графиков для преобразователей с разными выходными напряжениями. Спадающие участки кривых соответствуют максимальной температуре корпуса модуля +115 °C для МДМ10-Р (Для температурного диапазона «C»).

Примечание: ограничение мощности зависит от значения U_{BX} . (КПД), наличия радиатора, условий эксплуатации и может отличаться от значений, приведенных на графиках.

Информация по тепловым характеристикам модуля приведена в п.9.3.7 и табл. 14 ТУ.



Рис. 40. График ограничения мощности от T_{OKP} , без применения внешнего радиатора.

Для модулей МДМ10-1AxxCYP с входной сетью «A», U_{BX} =12 B.

Рис. 42. График ограничения мощности от T_{OKP} . **без применения внешнего радиатора**.

Для модулей МДМ10-1ДххСУР с входной сетью «Д», U_{BX} =48 В.

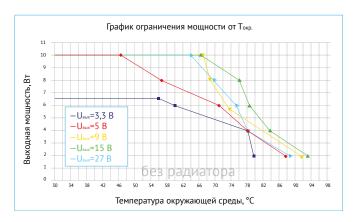
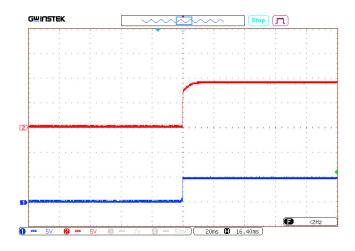


Рис. 41. График ограничения мощности от T_{OKP} . **без применения внешнего радиатора**.

Для модулей МДМ10-1BххСУР с входной сетью «B», U_{BX} =27 B.


8.3. Осциллограммы

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе 4 ТУ.

Имеется база данных с результатами по другим вариациям. Для получения информации, пожалуйста, обратитесь к персональному менеджеру или в службу технической поддержки.

8.3.1. Измерения для МДМ6-1А09ТР

Режимы и условия испытаний U_{BX} =12 B, $I_{BЫX}$ =0,66 A, $U_{BЫX}$ =9 B, $C_{BЫX}$ =33 мкФ, НКУ

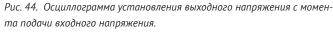
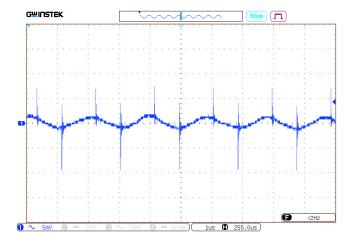
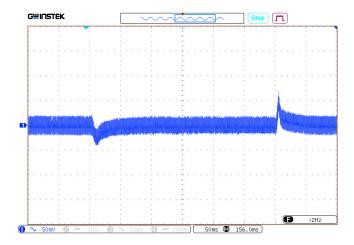




Рис. 43. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 20 мс/дел.

Луч 1 (синий) — входное напряжение. Масштаб 10 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 50 мс/дел.



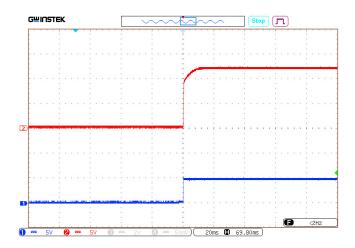

Рис. 45. Осциллограмма пульсаций выходного напряжения. Масштаб 5 мВ/дел. Развертка 1 мкс/дел.

Рис. 46. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %. Масштаб 50 мВ/дел. Развертка 50 мс/дел.

8.3.2. Измерения для МДМ6-1В12ТР

Режимы и условия испытаний U_{BX} =27 B, $I_{BЫX}$ =0,5 A, $U_{BЫX}$ =12 B, $C_{BЫX}$ =33 мкФ, НКУ

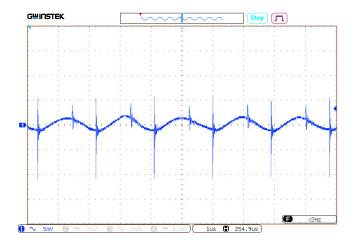
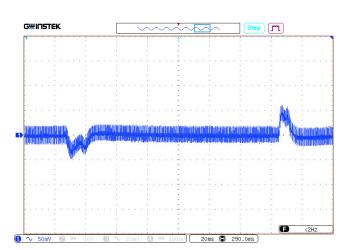

G<u>™</u>INSTEK

Рис. 47. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 20 мс/дел.

Рис. 48. Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий) — входное напряжение. Масштаб 20 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 100 мс/дел.



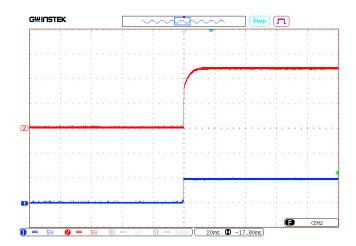

Рис. 49. Осциллограмма пульсаций выходного напряжения. Масштаб 5 мВ/дел. Развертка 1 мкс/дел.

Рис. 50. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %. Масштаб 50 В/дел. Развертка 20 мс/дел.

8.3.3. Измерения для МДМ10-1А12СР

Режимы и условия испытаний U_{BX} =12 B, $I_{BЫX}$ =0,83 A, $U_{BЫX}$ =12 B, $C_{BЫX}$ =33 мкФ, НКУ

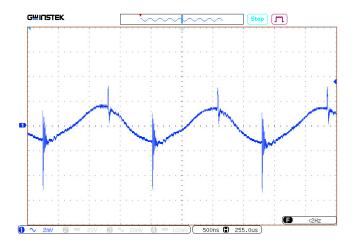
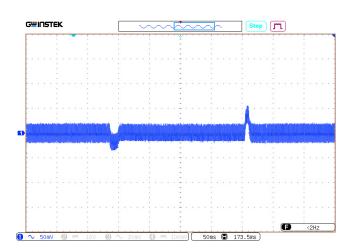

G≝I∩STEK ø <2Hz

Рис. 51. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 20 мс/дел.

Рис. 52. Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий) — входное напряжение. Масштаб 10 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка 50 мс/дел.



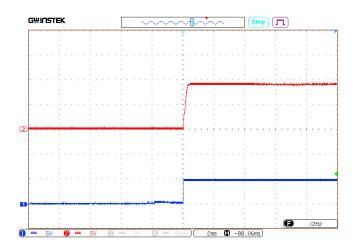

Рис. 53. Осциллограмма пульсаций выходного напряжения. Масштаб 2 мВ/дел. Развертка 500 нс/дел.

Рис. 54. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %. Масштаб 50 мВ/дел. Развертка 50 мс/дел.

8.3.4. Измерения для МДМ10-1В09СР

Режимы и условия испытаний U_{BX} =27 B, $I_{BыX}$ =1,1 A, $U_{BыX}$ =9 B, $C_{BыX}$ =33 мкФ, НКУ

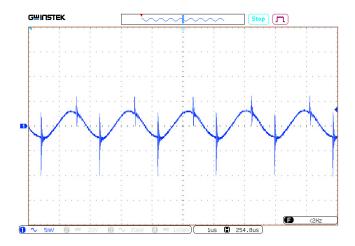
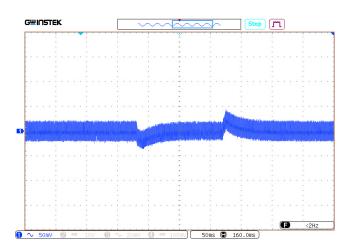

G≝I∩STEK ø <2Hz

Рис. 55. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 2 мс/дел.

Рис. 56. Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий) — входное напряжение. Масштаб 20 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 5 В/дел. Развертка 50 мс/дел.



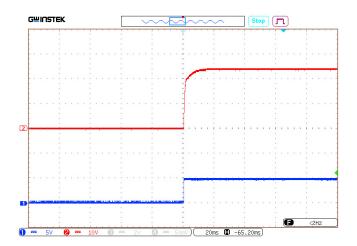

Рис. 57. Осциллограмма пульсаций выходного напряжения. Масштаб 5 мВ/дел. Развертка 1 мкс/дел.

Рис. 58. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %. Масштаб 50 мВ/дел. Развертка 50 мс/дел.

8.3.5. Измерения для МДМ10-1Д24СР

Режимы и условия испытаний U_{BX} =48 B, $I_{BЫX}$ =0,41 A, $U_{BЫX}$ =24 B, $C_{BЫX}$ =40 мкФ, НКУ

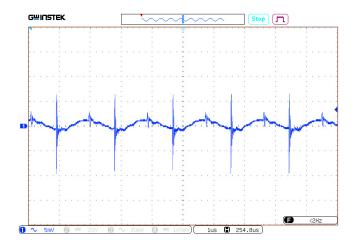

G≝I∩STEK ø <2Hz

Рис. 59. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий) — напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка 20 мс/дел.

Рис. 60. Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий) — входное напряжение. Масштаб 50 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка 100 мс/дел.

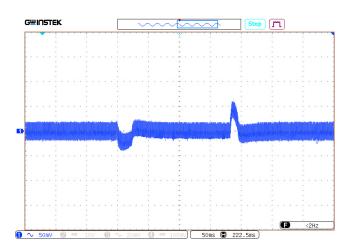
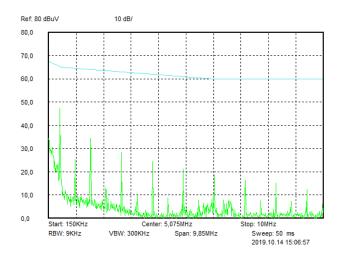


Рис. 61. Осциллограмма пульсаций выходного напряжения. Масштаб 5 мВ/дел. Развертка 1 мкс/дел.


Рис. 62. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 50% до 100 %. Масштаб 50 мВ/дел. Развертка 50 мс/дел.

8.4. Измерения кондуктивных радиопомех

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе п.4.3.1.20 ТУ. Проверку уровня напряжения радиопомех модулей проводят согласно п.7.4.13 ТУ.

8.4.1. Спектр напряжения радиопомех для МДМ6-1А09ТР

Режимы и условия испытаний: U_{BX} =12 B, $U_{BЫX}$ =9 B, $I_{BЫX}$ =0,66 A, HKУ, при включении согласно схеме [Puc. 2].

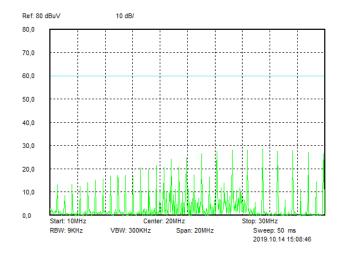
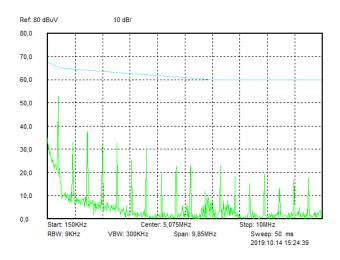



Рис. 63. Диапазон 0,15..10 МГц.

Рис. 64. Диапазон 10..30 МГц.

8.4.2. Спектр напряжения радиопомех для МДМ6-1В12ТР

Режимы и условия испытаний: U_{BX} =27 В, $U_{BЫX}$ =12 В, $I_{BЫX}$ =0,5 А, НКУ, при включении согласно схеме [*Puc. 2*].

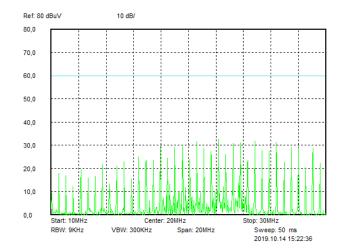
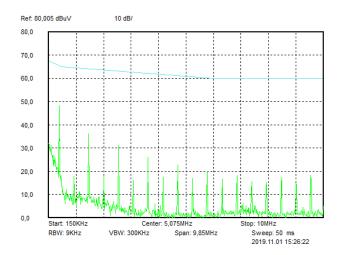



Рис. 65. Диапазон 0,15..10 МГц.

Рис. 66. Диапазон 10..30 МГц.

8.4.3. Спектр напряжения радиопомех для МДМ10-1А12СР

Режимы и условия испытаний: U_{вх.}=12 B, U_{вых.}=12 B, I_{вых.}=0,83 A, HKУ, при включении согласно схеме [*Puc. 2*].

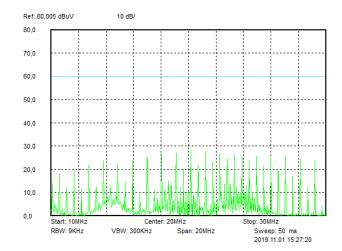
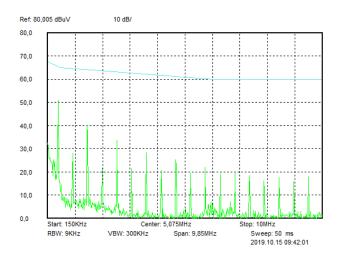
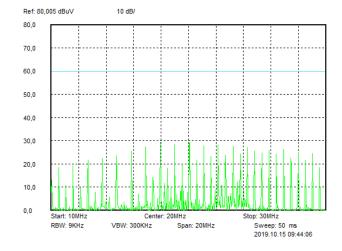



Рис. 67. Диапазон 0,15..10 МГц.

Рис. 68. Диапазон 10..30 МГц.

8.4.4. Спектр напряжения радиопомех для МДМ10-1В09СР

Режимы и условия испытаний: U_{BX} =27 B, $U_{Bb|X}$ =9 B, $I_{Bb|X}$ =1,1 A, HKУ, при включении согласно схеме [Puc. 2].



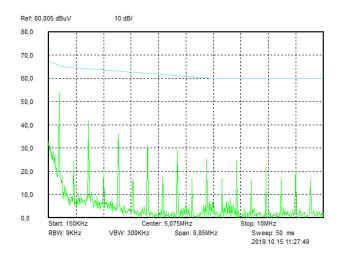

Рис. 69. Диапазон 0,15..10 МГц.

Рис. 70. Диапазон 10..30 МГц.

8.4.5. Спектр напряжения радиопомех для МДМ10-1Д24СР

Режимы и условия испытаний: U_{вх} =48 В, U_{вых} =24 В, I_{вых} =0,41 А, НКУ, при включении согласно схеме [*Puc. 2*].

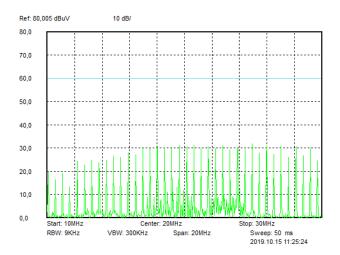


Рис. 71. Диапазон 0,15..10 МГц.

Рис. 72. Диапазон 10..30 МГц.

9. Габаритные чертежи

Вывод	1	2	7, 8	9	10	14	16
Назначение	-BX	вкл	не исп	+BЫX	-ВЫХ	КОРП	+BX

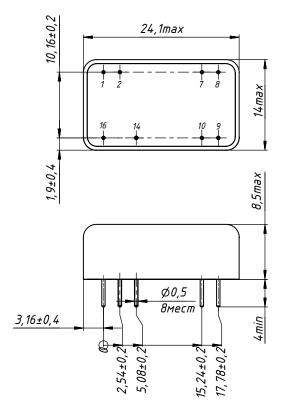


Рис. 73. Исполнение в усиленном корпусе с фланцами для МДМ6-Р, МДМ10-Р.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43

Даташит распространяется на следующие модели: МДМ6-1A3,3TP, МДМ6-1A3,3MP, МДМ6-1A5TP, МДМ6-1A5TP, МДМ6-1A9MP, МДМ6-1A9MP, МДМ6-1A12TP, МДМ6-1A12TP, МДМ6-1A15TP, МДМ6-1A15TP, МДМ6-1A5TP, МДМ6-1A24TP, МДМ6-1A24TP, МДМ6-1A24TP, МДМ6-1A27TP, МДМ6-1B3,3MP, МДМ6-1B3,3MP, МДМ6-1B5TP, МДМ6-1B5MP, МДМ6-1B9TP, МДМ6-1B9TP, МДМ6-1B12TP, МДМ6-1B12TP, МДМ6-1B15TP, МДМ6-1B15TP, МДМ6-1B15TP, МДМ6-1B24TP, МДМ6-1B27TP, МДМ6-1B27TP, МДМ6-1B3,3TP, МДМ6-1Д3,3TP, МДМ6-1Д5TP, МДМ6-1Д5TP, МДМ6-1Д9TP, МДМ6-1Д9TP, МДМ6-1Д12TP, МДМ6-1Д12TP, МДМ6-1Д12TP, МДМ6-1Д15MP, МДМ10-1A3,3TP, МДМ10-1A3,3TP, МДМ10-1A5TP, МДМ10-1B5TP, МДМ10-1B5TP, МДМ10-1B5TP, МДМ10-1B5TP, МДМ10-1B5TP, МДМ10-1B9TP, МДМ10-1B9TP, МДМ10-1B9TP, МДМ10-1B12TP, МДМ10-1B12TP, МДМ10-1B15TP, МДМ