

DATASHEET

Серия МНМ мнм15

Для модулей электропитания серии МНМ

1. Описание

Микромодуль МНМ — первое российское полностью интегрированное решение для организации электропитания низковольтных нагрузок в жестких условиях эксплуатации. Является импульсным неизолированным понижающим преобразователем. Низкопрофильная конструкция высотой 5 мм, включающая ШИМ-контроллер, силовые транзисторы, дроссель, конденсаторы, позволяет соответствовать большинству стандартов проектирования компактной аппаратуры ответственных сфер применения. Широкий диапазон температуры корпуса –60...+125 °C обеспечивает надежную работу на протяжении 50 000 часов в типовых условиях эксплуатации. МНМ15 позволяет обеспечить качественным электропитанием нагрузку с регулируемым напряжением в диапазоне от 0,8 до 5 В и током 15 А без снижения мощности вплоть до достижения максимальной температуры корпуса.

Заливка компаундом позволяет функционировать в условиях высоких механических воздействий и агрессивных сред. В отличие от импульсных стабилизаторов на дискретных компонентах микромодуль позволяет снизить время проектирования и габариты системы электропитания. Возможность синхронизировать внутреннюю частоту нескольких микромодулей от внешнего тактового генератора позволяет применить более компактные фильтры радиопомех.

Благодаря наличию ключевых защит и функций, MHM15 позволяет формировать сложные распределенные высокоэффективные архитектуры электропитания.

1.1. Дополнительная информация

1.1.1. Описание на сайте производителя

https://aedon.ru/catalog/dcdc/series/34

1.1.2. Отдел продаж

8 800 333 81 43; mail@aedon.ru

1.1.3. Техническая поддержка

techsup@aedon.ru

1.1.4. 3D модели, footprint для Altium Designer

https://aedon.ru/content/catalog/docs/308,363,367,355,368,356,369,374,362,370/MHM

2. Особенности

- Компактный размер
- Регулируемое выходное напряжение
- LGA корпус под автоматизированный поверхностный монтаж
- Диапазон рабочей температуры корпуса -60...+125 °C
- Дистанционное выключение, плавный старт, синхронизация частоты преобразования, трекинг, диагностика выходного напряжения
- Высокий КПД
- Два диапазона входного напряжения с номиналами 12 В; 27 В

3. Содержание

1. Описание
1.1. Дополнительная информация1
2. Особенности
3. Содержание 1
4. Модельный ряд
5. Условное обозначение модулей электропитания2
6. Расположение и назначение выводов
7. Характеристики
7.1. Общие характеристики4
7.2. Входные характеристики4
7.3. Выходные характеристики4
7.4. Функциональная схема5
8. Схема включения
9. Монтаж изделия
10. Сервисные функции
10.1. Плавный пуск
10.2. Трекинг
10.3. Дистанционное управление7
10.4. Установка выходного напряжения
10.5. Работа при малых нагрузках8
10.6. Синхронизация частоты преобразования8
10.7. Выход тактовых импульсов8
10.8. Диагностика выходного напряжения9
10.9. Теплоотведение9
11. Габаритный чертеж

4. Модельный ряд

Наименование	Номинальное входное напряжение	Диапазон входного напряжения	Номинальный выходной ток	Диапазон установки выходного напряжения
MHM15-1A0,85,0T	12 B	724 B	15 A	0,85,0 B
MHM15-1B0,85,0T	27 B	1836 B	15 A	0,85,0 B

5. Условное обозначение модулей электропитания

Для получения дополнительной информации свяжитесь с отделом продаж по телефону $8\,800\,333\,81\,43$ или электронной почте mail@aedon.ru

^{*}возможен заказ уже установленного модуля на отладочную плату (демо-плата). Для заказа после указания модели добавляется приписка «ДП». Пример:

МНМ15-ДП-1А0,85,0Т

6. Расположение и назначение выводов

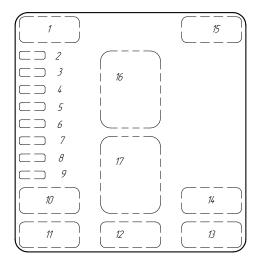


Рис. 1. Расположение контактных площадок модуля МНМ15. Вид сверху.

Вывод	Назначение	Описание
1	+IN	Входное напряжение. Внешние входные конденсаторы подключаются между этими выводами и выводами PGND в непосредственной близости от модуля.
2	EN	Модули могут включаться и выключаться по внешней команде подаваемой на вывод «EN». Дистанционное выключение модулей осуществляться путём соединения вывода «EN» с выводом «PGND» или «COM».
3	CLKOUT	Вывод тактовых импульсов. Частота тактовых импульсов равна частоте преобразования модуля. Амплитуда импульсов находится в диапазоне от 3,0 до 3,5 В
4	SYNC	Внешняя синхронизация частоты преобразования, а также выбор режима работы на низкой нагрузке.
5	PG	Вывод функции диагностики выходного напряжения. При напряжении на выходе модуля в рамках установившегося значения, от 0,95-Uном до 1,05-Uном, на выводе «PG» должно присутствовать напряжение высокого уровня, равное выходному напряжению модуля. Если напряжение на выходе модуля находится за рамками установившегося значения, менее 0,85-Uном или более 1,15-Uном, то напряжение на выводе «PG» не должно превышать 0,4 В.
6	VC	Выводы подключаются при работе двух модулей на общую нагрузку.
7	СОМ	Сигнальная земля. Соединена с силовой землей внутри модуля.
8	TR/SS	Вывод функции Трекинга и Плавного старта, которые позволяют контролировать скорость нарастания выходного напряжения модуля в процессе запуска.
9	FB	Вход обратной связи модуля. Выходное напряжение зависит от сопротивления резистора, подключенного между этим выводом и выводом PGND.
10	PGND	Силовая земля, возврат тока силового каскада модуля. Минусовые цепи входных и выходных конденсаторов CIN и COUT подключаются между этой группой контактов и группами +IN и +OUT соответственно.
11	+OUT	Выходное напряжение модуля. Внешние выходные конденсаторы и нагрузка подключаются между этими выводами и выводами PGND в непосредственной близости от модуля.
12	+OUT	Выходное напряжение модуля. Внешние выходные конденсаторы и нагрузка подключаются между этими выводами и выводами PGND в непосредственной близости от модуля.
13	+OUT	Выходное напряжение модуля. Внешние выходные конденсаторы и нагрузка подключаются между этими выводами и выводами PGND в непосредственной близости от модуля.
14	PGND	Силовая земля, возврат тока силового каскада модуля. Минусовые цепи входных и выходных конденсаторов CIN и COUT подключаются между этой группой контактов и группами +IN и +OUT соответственно.
15	+IN	Входное напряжение. Внешние входные конденсаторы подключаются между этими выводами и выводами PGND в непосредственной близости от модуля.
16	HS/PGND	Вывод «HS/PGND» используется для отвода тепла от микросхемы ШИМ-контроллера установленного внутри модуля. Данный вывод должен быть распаян на медный полигон обеспечивающий допустимый температурный режим работы модуля.
17	PGND	Силовая земля, возврат тока силового каскада модуля. Минусовые цепи входных и выходных конденсаторов CIN и COUT подключаются между этой группой контактов и группами +IN и +OUT соответственно.

7. Характеристики

7.1. Общие характеристики

Параметр	Условия	Значение	Размерность
Температурный диапазон (корпус)	Температура на выводе HS/ PGND	-60+125	°C
Гарантия		20	лет
Величина напряжения кондуктивных радиопомех	ГОСТ 30429-96 (2.1)	ограничена кривой 3	-
Гамма-процентная наработка на отказ	Гамма = 97,5% (Ивх = Ивхном, Івых = 10,5 A, Ткорп. ≤87,5 °C	50 000	ч

Стойкость к ВВФ:

Наименование ВВФ	Наименование характеристик ВВФ, единица измерения	Значение воздействующего фактора	Размерность
Синусоидальная вибрация	Диапазон частот, Гц	10-2000	Гц
	Амплитуда ускорения, м/c² (g)	200 (20)	м/c² (g)
	Амплитуда виброперемещения, мм	0,3	мм
Механический удар одиночного действия	Пиковое ударное ускорение, м/с² (g)	10000 (1000)	м/c² (g)
	Длительность действия ударного ускорения, мс	0,5-2	мс
Значение атмосферного давления при эксплуатации	Минимальное значение при эксплуатации,	0,67 · 10³ - 2,92·10⁵ (5-2207)	Па (мм рт. ст.)

7.2. Входные характеристики

Параметр	Обозначение	Условия	Значение	Размерность
Максимальное потребление тока модулем при номинальном входном напряжении	A 12 (724) B;	Потребление тока	0,2	мА
	B 27 (1836) B;	в выключенном состоянии	0,36	мА
	A 12 (724) B;	Потребление тока в	86	мА
	B 27 (1836) B;	режиме XX, мА	72	мА

7.3. Выходные характеристики

Параметр	Условие	Значение	Размерность
Номинальный Івых		15	A
Минимальный Івых		0	A
Диапазон Ивых		0,85,0	В
Нестабильность выходного напряжения при плавном изменении входного напряжения	-	± 0,5	%
Нестабильность выходного напряжения при плавном изменении выходного тока	изменение выходного тока в диапазоне от 0% до 100%	± 0,7	%
Температурная нестабильность выходного напряжения	-	± 1,5	%
Временная нестабильность выходного напряжения	-	± 0,5	%
Суммарная нестабильность выходного напряжения модулей во всем диапазоне входных напряжений, выходных токов и температур окружающей среды	Непрерывная работа в течение 8 часов	± 3	%
Переходное отклонение выходного напряжения (б Unep) модулей при скачкообразном изменении входного напряжения	от Uном до Uмакс и обратно, при номинальном выходном токе и длительности фронта должно быть не более 0,1 мс	± 5	%
Переходное отклонение выходного напряжения (бUпер) модулей при скачкообразном уменьшении выходного тока	уменьшение тока на 25 % от номинального и обратно, при номинальном входном напряжении и длительности фронта не более 0,1 мс	± 5	%
Пульсации выходного напряжения	Івых ≥ 0,1. Іном; Ивых > 3 В	1	%
модулей от пика до пика	Івых ≥ 0,1-Іном; Ивых ≤ 3 В	30	мВ
	Івых < 0,1·Іном;	2	%
	Івых < 0,1∙Іном; Ивых ≤ 3 В	60	мВ
Защита от перегрузки и КЗ	Переходит в режим ограничения тока	1,8*Іном	-

7.4. Функциональная схема

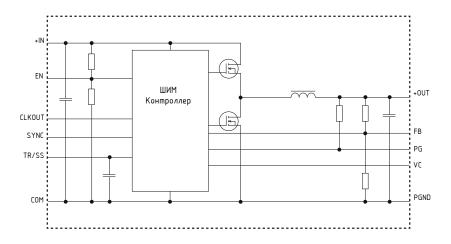


Рис. 2. Функциональная схема модуля электропитания МНМ15

8. Схема включения

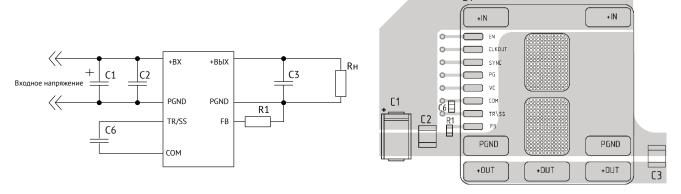


Рис. 3. Типовая схема включения модуля электропитания МНМ

Рис. 4. Рекомендуемая топология печатной платы

D1

C1	танталовый конденсатор	A B	12 B 27 B	68 мкФ —
C2	керамический конденсатор	A B	12 B 27 B	30 мкФ 30 мкФ
C3	керамический конденсатор	A B	12 B 27 B	188 мкФ 282 мкФ
R1	Соответствующее значения для элемента R1 - см. п. 10.4			

9. Монтаж изделия

Монтаж изделия на печатную плату производить с использованием оборудования для поверхностного монтажа ЭРИ. При выборе паяльных паст руководствоваться требованиями ОСТ 4Г 0.033.200, раздел 5. Использовать паяльные пасты с шариками припоя не менее 3 типа (размер шариков 20 – 45 мкм) из оловянно-свинцовых сплавов: Sn63/Pb37; Sn62/Pb36/Ag2 или Sn62.6/Pb36.8/Ag0.4/Sb0.2.

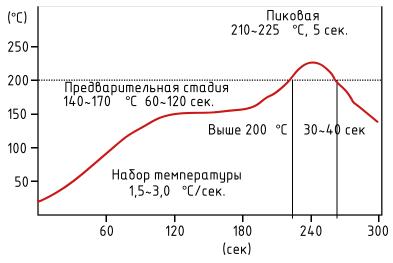


Рис. 5. Изменение температуры, °С в печи оплавления паяльной пасты с течением времени, в секундах.

10. Сервисные функции

10.1. Плавный пуск

Модули имеют встроенный режим плавного пуска. Режим плавного пуска модуля регулируется изменением емкости конденсатора С6. В качестве конденсатора С6 рекомендуется использовать керамический конденсатор с низким током утечки, например К10-84в. Максимальная емкость конденсатора С6 не ограничена. Допускается не устанавливать конденсатор С6, при этом время плавного пуска будет минимальным. Максимальное напряжение на выводе «TR/SS» не превышает 4 В.

10.2. Трекинг

Модули МНМ15 имеют встроенную функцию трекинга. Данная функция позволяет пользователю регулировать скорость нарастания выходного напряжения модуля в процессе запуска. Режим трекинга регулируется с помощью напряжения на выводе «TR/SS». При подаче напряжения на вывод «TR/SS» меньше 1,5 В, выходное напряжение регулируется пропорционально напряжению на выводе «TR/SS». При подаче напряжения на вывод «TR/SS» более 1,6 В, выходное напряжение определяется резистором R1.

10.3. Дистанционное управление

Модули могут включаться и выключаться по внешней команде подаваемой на вывод «EN». Дистанционное выключение модулей осуществляться путём соединения вывода «EN» с выводом «PGND» или «COM». Соединение может осуществляться с помощью механического контакта или электрического ключа типа «разомкнутый коллектор». При этом через ключ может протекать ток до 2 мА, а максимальное падение напряжение на ключе должно быть не более 1,0 В. В разомкнутом состоянии к ключу может быть приложено напряжение до 6 В, допустимый ток утечки через ключ не превышает 50 мкА.

Выводы «PGND» и «COM» соединены между собой внутри модуля.

10.4. Установка выходного напряжения

Установка выходного напряжения модулей осуществляется путем подключения резистора R1 между выводом «FB» и «PGND». Соответствие номинала резистора выходному напряжению модуля определяется по формуле:

R1 [OM] =
$$\frac{6000}{U_{\text{OUT}} - 0,606}$$
,

либо выбирается из таблицы:

U _{OUT} , B	1,8	2,5	3,3	5
R1, Ом	5025	3168	2227	1365

10.5. Работа при малых нагрузках

Модули имеют два различных режима работы на малых нагрузках, выбор режимов осуществляется путем подачи напряжения на вывод «SYNC» согласно таблице ниже.

- Пакетный режим работы обеспечивает пониженное потребление модуля в режиме малых нагрузок. Модуль поддерживает напряжение на нагрузке путем генерации пакетов импульсов. Частота генерации пакетов импульсов меняется в зависимости от нагрузки.
- Режим пропуска импульсов обеспечивает фиксированную частоту преобразования в большем диапазоне нагрузок. При этом потребление модуля на холостом ходу увеличивается по сравнению с пакетным режимом работы.
- Режим пропуска импульсов обеспечивает фиксированную частоту преобразования в большем диапазоне нагрузок. При этом потребление модуля на холостом ходу увеличивается по сравнению с пакетным режимом работы. В таблице 7.1 приведено потребление в режиме пропуска импульсов.

Режим работы	Напряжение на выводе «SYNC», В				
	Мин.	Ном.	Макс.		
Пакетный режим	0	-	0,6		
Режим пропуска импульсов	-	NC	-		
Режим плавающей частоты	3,0	-	5,0		

Режим плавающей частоты, позволяет уменьшить создаваемые модулем помехи для обеспечения лучшей электромагнитной совместимости. При этом частота преобразования модуля модулируется более низкой частотой. Выбор режима плавающей частоты осуществляется путем подачи соответствующего уровня напряжения на вывод «SYNC».

10.6. Синхронизация частоты преобразования

Модули имеют режим синхронизации по переднему фронту тактовых импульсов подаваемых на вход «SYNC». Амплитуда тактовых импульсов должна быть в диапазоне от 1,5 до 5 В. При синхронизации от внешнего сигнала модули автоматически переходят в режим пропуска импульсов на малых нагрузках. Параметры внешнего синхроимпульса приведены в таблице:

Параметр	Сеть А	Сеть А			Сеть В		
	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.	
Верхний уровень импульса, В	1,5	-	5,0	1,5	-	5,0	
Нижний уровень импульса, В	0	-	0,6	0	-	0,6	
Коэффициент заполнения	0,2	-	0,7	0,2	-	0,7	
Частота синхроимпульсов, кГц	800	-	900	400		500	

10.7. Выход тактовых импульсов

Модуль МНМ15 имеет выход тактовых импульсов, вывод «СLKOUT». Частота тактовых импульсов равна частоте преобразования модуля. Амплитуда импульсов находится в диапазоне от 3,0 до 3,5 В. Данный сигнал может быть использован для синхронизации частоты работы нескольких модулей по схеме ведущий-ведомый. Для этого необходимо соединить вывод «СLKOUT» ведущего модуля с выводами «SYNC» ведомых модулей. Максимальное количество подключаемых ведомых модулей не более четырех. Для увеличения количества подключаемых ведомых модулей можно использовать каскадную схему подключения.

Если ведущий модуль находится в пакетном режиме работы, то на выводе «CLKOUT» присутствует низкий уровень напряжения, не более 0,6 В. При этом ведомые модули так-же переходят в пакетный режим работы.

10.8. Диагностика выходного напряжения

При напряжении на выходе модуля в рамках установившегося значения, от 0,95·Uном до 1,05·Uном, на выводе «PG» присутствует напряжение высокого уровня, равное выходному напряжению модуля. Если напряжение на выходе модуля находится за рамками установившегося значения, менее 0,85·Uном или более 1,15·Uном, то напряжение на выводе «PG» не превышает 0,4 В.

10.9. Теплоотведение

Вывод «HS/PGND» используется для отвода тепла от микросхемы ШИМ-контроллера установленного внутри модуля. Данный вывод должен быть распаян на медный полигон обеспечивающий допустимый температурный режим работы модуля. Для уменьшения теплового сопротивления между выводом «HS/PGND» и теплоотводящим полигоном рекомендуется использовать увеличенное количество переходных отверстий. Для более эффективного сброса тепла в окружающую среду рекомендуется использовать дополнительный радиатор, как показано на рисунке 7. При эксплуатации температура площадки вывода «HS/PGND» не должна превышать 125 °C. При превышении указанной температуры в модуле может срабатывать защита по превышению температуры ШИМ-контроллера, блокирующая работу модуля.

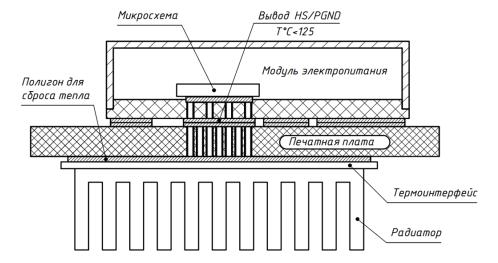
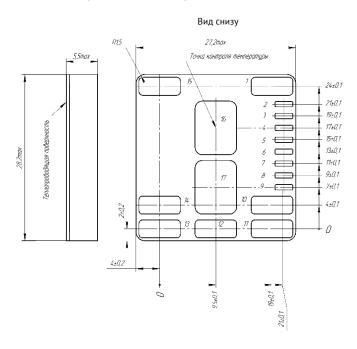



Рис. 6. Эффективный отвод тепла от модуля.

11. Габаритный чертеж

Вывод	1	2	3	4	5	6	7	8	9	10
Назначение	+IN	EN	CLKOUT	SYNC	PG	VC	СОМ	TR/SS	FB	PGND
Вывод		11	12	13		14	15	16		17
Назначение		+OUT	+OUT	+OUT		PGND	+IN	HS/PGI	ND	PGND

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43