

МДМ50-С

DC/DC преобразователи повышенной надежности

БКЯЮ.436430.005ТУ Приёмка ОТК Серия включена в ЕРРРП и ТОРП

1. Описание

Унифицированные изолированные DC/DC преобразователи с выходной мощностью 50 Вт, разработаны для эксплуатации в аппаратуре, с повышенными требованиями по надежности.

Схемотехника и конструкция преобразователя позволяет обеспечить соответствие стандартам с требованиями к ЭМС и защищенности от ВВФ. Рекомендуется для использования в системах электропитания воздушных судов и наземных транспортных средств.

Модули способны работать в широком диапазоне температур корпуса, включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току и короткого замыкания.

1.1. Особенности

- Гарантия 5 лет
- Форм-фактор 1/16 Brick
- Выходной ток до 10 А
- Рабочая температура корпуса -55...+105 °C
- Низкопрофильная 10,3 мм конструкция
- Защиты от перегрузки по току, КЗ и перенапряжения
- Дистанционное вкл/выкл
- Типовой КПД 89%
- Герметизирующая заливка

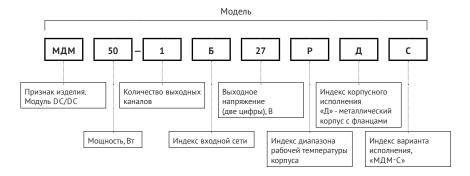
1.2. Дополнительная информация

1.2.1. Отдел продаж и служба технической поддержки

+7 (473) 300-300-5; mail@aedon.ru

1.2.2. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/ https://dzen.ru/aedon/


2. Содержание

1. Описание	д
1.1. Особенности	1
1.2. Дополнительная информация	1
2. Содержание	
3. Информация для заказа	
3.1. Сокращения	
3.2. Выходная мощность и ток	
3.3. Индекс номинального входного напряжения	
4. Основные характеристики	
4.1. Выходные характеристики	
4.2. Защиты	
4.3. Общие характеристики	
4.4. Конструктивные параметры	

5. Функциональные схемы	5
6. Схемы подключения	5
6.1. Схема измерения ЭМС	6
7. Сервисные функции	7
7.1. Дистанционное управление	7
7.2. Регулировка	8
8. Результаты испытаний	8
8.1. КПД	8
8.2. Осциллограммы	10
9. Габаритные чертежи	11

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{Bых.}	Выходная мощность
U _{Bых.ном.}	Номинальное выходное напряжение
І _{вых.ном.}	Номинальный выходной ток
І _{вых.мин.}	Минимальный выходной ток
U _{BX.HOM.}	Номинальное входное напряжение
U _{BX.MИН} U _{BX.MAKC} .	Диапазон входного напряжения
T _{KOPN} .	Рабочая температура корпуса
T _{OKP.}	Рабочая температура окружающей среды
нку	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	БКЯЮ.436430.005ТУ

3.2. Выходная мощность и ток

Модель	мдм50-С							
Выходная мощность, Вт	33 50							
Номинальное выходное напряжение, В*	3,3	5	9	12	15	24	27	48
Номинальный выходной ток, А	10	10	5,6	4,17	3,33	2,08	1,85	1,04

3.3. Индекс номинального входного напряжения

Параметр	Индекс «Б»
Номинальное входное напряжение, В	27
Диапазон входного напряжения, В	940
Диапазон переходного отклонения (0,1 с), В	850
Типовой КПД для U _{вых.} =12 В	89%

4. Основные характеристики

Полное описание характеристик, условий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр	Значение		
Подстройка выходного напряжения			+1020 % от U _{вых.ном.}
Установившееся отклонение выходного напря-	Нагрузка 10–100 %		±1 % ot U _{Bых.ном.}
жения	Нагрузка 0-10 %		±2 % ot U _{BыX.HOM.}
Нестабильность выходного напряжения	При плавном измене жения и выходного т	· · ·	±0,5 % от U _{BЫХ.НОМ.}
	При изменении нагрузки 10-100 %		±0,5 % от U _{вых.ном.}
Размах пульсаций (пик-пик)	При токах нагрузки	U _{вых.} выше 5 В	1 % от U _{вых.ном.}
	с 10% до 100% от І _{вых.ном.}	U _{ВЫХ.} до 5 В включительно	не более 70 мВ
	При токах нагрузки с 0% до 10% от Івых.ном.	U _{вых.} выше 5 В	2 % от U _{вых.ном.}
		U _{вых.} до 5 В включительно	не более 150 мВ
Максимальная суммарная емкость конденсато-	3,3 B		4000 мкФ
ров на выходе модуля (при нагрузке 100 %)	5 B		3200 мкФ
	9 B		1000 мкФ
	12 B		600 мкФ
	15 B		380 мкФ
	24 B		140 мкФ
	27 B		140 мкФ
	48 B		30 мкФ

Параметр	Значение	
Время включения (при U _{вх.ном} , I _{вых.ном})	по команде ДУ [7.1]	<30 MC
	с момента подачи $U_{BX_{-}}$	<30 мс
Переходное отклонение выходного напряжения	При скачкообразном изменении с U _{ВХ.НОРМ.} до U _{ВХ.МАКС.} / U _{ВХ.МИН.} (дли- тельность фронта >100 мкс)	±5 % от U _{Bых.ном.}
При скачкообразном изменении тока нагрузки на 25 % от Івых.ном. (длительность фронта >100 мкс)		±5 % от U _{Bых.ном.}
Потребление в режиме XX (при U _{в х.ном})		50 MA
Потребление в выключенном состоянии по ДУ		5 MA

4.2. Защиты

Параметр	Значение
Защита от перегрузки	есть
Защита от короткого замыкания	есть
Защита от перенапряжения на выходе	есть
Синусоидальная вибрация	102000 Гц, 200 (20) м/с² (д), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (T _{OKP.} =35°C)	98%

4.3. Общие характеристики

Параметр	Значение		
Рабочая температура корпуса		−55+105 °C	
Рабочая температура окружающей среды		−55+100 °C	
Температура хранения		−60+120 °C	
Частота преобразования	Частота преобразования		
Прочность изоляции (60 с)	вход/выход	=2000 B	
вход/корпус, выход/корпус		=1500 B	
Сопротивление изоляции @ =500 В, НКУ		не менее 1 ГОм	
Гамма-процентная наработка на отказ, при Y=95% (в типовом режиме)		30 000 ч	
Гарантийный срок эксплуатации	5 лет		
Гарантийный срок хранения		5 лет	

4.4. Конструктивные параметры

Параметр	Значение
Форм-фактор	1/16 Brick
Габаритные размеры	не более 33,4×30,8×10,3 мм без учета выводов
Macca	не более 32 г

Параметр	Значение
Материал корпуса	алюминий с покрытием МДО
Материал выводов	фтористая бронза с покрытием SnPb
Условия пайки	260 °C @ 5 c

5. Функциональные схемы

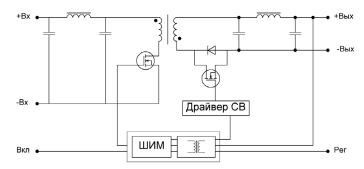


Рис. 1. Функциональная схема МДМ50-С.

6. Схемы подключения

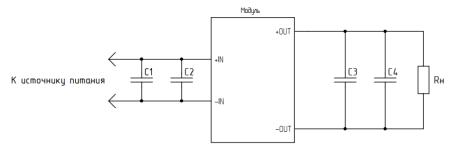


Рис. 2. Типовая схема подключения.

Вместо танталового конденсатора допускается установка конденсатора любого другого типа такой же емкости с низким значением ESR. Максимальное значение емкости входных конденсаторов не ограничено и выбирается с учетом конкретных условий эксплуатации модулей.

Описание элементов схемы подключения

C1	танталовый или электролитический	Входное напряжение	=27 B	100 мкФ
C2	керамический	Входное напряжение	=27 B	10 мкФ
C3	керамический	Выходное напряжение	=3,3 B; 5 B; 9 B; 12 B; 15 B; 24 B; 27 B =48 B	10 мкФ 2,2 мкФ
C4	танталовый или электроли- тический с низким ESR	Выходное напряжение	=3,3 B; 5 B =9 B =12 B =15 B =24 B; 27 B =48 B	330 мкФ 220 мкФ 68 мкФ 33 мкФ 22 мкФ 15 мкФ

6.1. Схема измерения ЭМС

Проверку уровня напряжения радиопомех модулей проводят согласно ГОСТ25803 в типовом режиме эксплуатации:

 $U_{BX} = U_{BX,HOM}$; $P_{BbiX} = 0.7 \times P_{MAKC}$; $T_{KOP\Pi} \le 0.7 \times T_{KOP\Pi,MAKC}$.



Рис. 3. Схема измерения ЭМС МДМ50-С.

Описание элементов схемы подключения

C1	танталовый	Входное напряжение	=27 B	100 мкФ
C2	керамический	Входное напряжение	=27 B	10 мкФ
C3, C5	керамический	Выходное напряжение	=3,3 B; 5 B; 9 B; 12 B; 15 B; 24 B; 27 B =48 B	10 мкФ 2,2 мкФ
C4, C6	танталовый	Выходное напряжение	=3,3 B; 5 B =9 B =12 B =15 B =24 B; 27 B =48 B	330 мкФ 220 мкФ 68 мкФ 33 мкФ 22 мкФ 15 мкФ
C7	керамический			1500 пФ

7. Сервисные функции

7.1. Дистанционное управление

Функция дистанционного выключения-включения (ДУ) по команде позволяет управлять работой модуля двумя способами:

Первый: с использованием механического реле [*Puc. 4*], транзистора типа «разомкнутый коллектор» [*Puc. 5*] или оптрона [*Puc. 6*]. Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «–ВХ».

При этом через ключ может протекать ток до 2 мА, а максимальное падение напряжения на ключе должно быть не более 1 В. В разомкнутом состоянии к ключу может быть приложено напряжение до 8 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации ДУ одного или одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «–ВХ» и коммутирующий ключ. Если функция ДУ не используется, вывод «ВКЛ/ВЫКЛ» или «ВКЛ» допускается оставить неподключенным или обрезать.

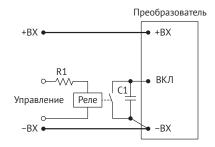


Рис. 4. ВКЛ/ВЫКЛ с помощью реле.

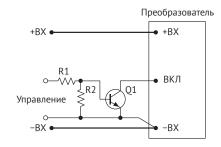


Рис. 5. ВКЛ/ВЫКЛ с помощью биполярного транзистора.

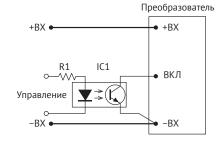


Рис. 6. ВКЛ/ВЫКЛ с помощью оптрона.

Второй: путем подачи управляющего сигнала относительно «-ВХ». Если напряжение на управляющем выводе менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на управляющем выводе более 2,5 В, то модуль перейдет во включенное состояние. Максимальное напряжение, прикладываемое к входу «ВКЛ/ВЫКЛ», не должно превышать 50 В.

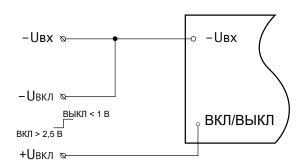


Рис. 7. Управление логическим уровнем напряжения.

7.2. Регулировка

Рис. 8. Увеличение Ивых.

Рис. 9. Снижение Ивых.

Регулировка выходного напряжения модулей осуществляется путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения [*Puc. 8*] или к выводу «+ВЫХ» для уменьшения выходного напряжения [*Puc. 9*].

Значение подстроечного резистора R1 (Rdown/Rup), можно рассчитать по формулам:

Rdown :=
$$\frac{\text{UBыx * K1-K2}}{\text{UBыx_hom - UBыx}} - \text{K3} \quad \text{Rup := } \frac{\text{K2}}{\text{UBыx - UBыx_hom}} - \text{K3}$$

U _{Bых.ном.}	3,3	5	9	12	15	24	27	48
K1	2,2	3,83	7,475	9,1	11,3	17,4	24	36
K2	2,64	4,6	14,28	30,03	46,22	121,28	170,76	482,49
K3	4,3	7,87	12,7	22	27	39	53,6	82

Полученное значение резистора в кOм, $U_{B\,\textsc{bi}\,X.}$ — напряжение, необходимое после регулировки.

8. Результаты испытаний

8.1. КПД

На рисунках приведены примеры измерений КПД для модулей МДМ50-С (с зависимостью от значений входного напряжения и выходной мощности в диапазоне нагрузки 20...100%). Все представленные измерения носят ознакомительный характер и значения могут отличаться для модулей разных партий.

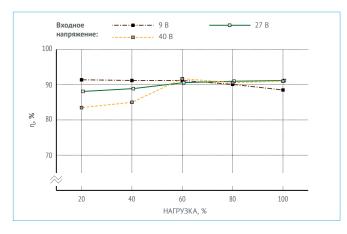


Рис. 10. МДМ50-1Б05РДС.

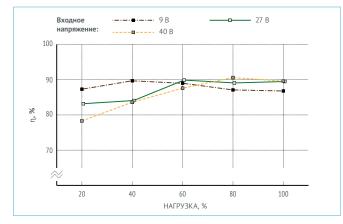


Рис. 11. МДМ50-1Б09РДС.

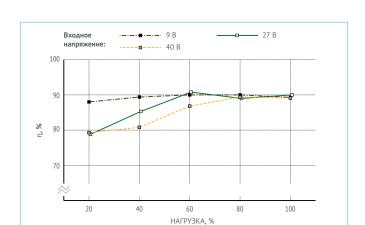


Рис. 12. МДМ50-1Б12РДС.

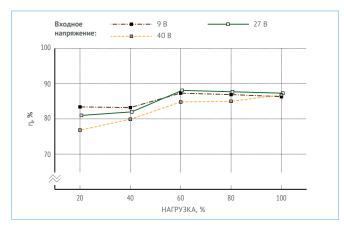


Рис. 14. МДМ50-1Б24РДС.

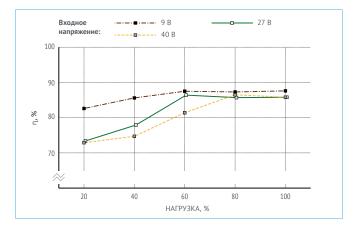


Рис. 16. МДМ50-1Б48РДС.

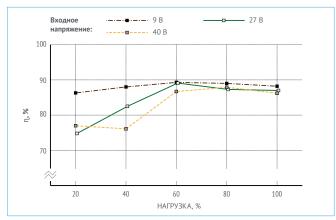


Рис. 13. МДМ50-1Б15РДС.

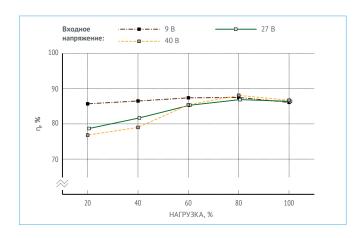


Рис. 15. МДМ50-1Б27РДС.

8.2. Осциллограммы

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий.

Имеется база данных с результатами по другим вариациям. Для получения информации, пожалуйста, обратитесь к персональному менеджеру или в службу технической поддержки. Режим и условия испытаний Uвх.=28 В; Івых.=2,08 А; Ивых.=24 В; Свых.=10 + 22 мкФ; НКУ

Рис. 17. Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий)— напряжение на выводе «ВКЛ». Масштаб 5 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 5 мс/дел.

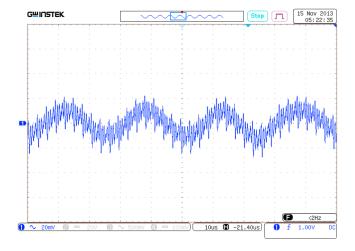
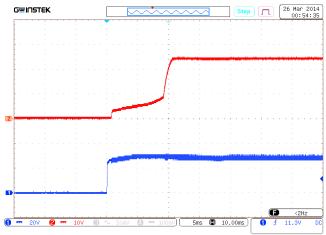



Рис. 19. Осциллограмма пульсаций выходного напряжения. Масштаб 20 мВ/дел. Развертка 10 мкс/дел.

Puc. 18. Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий)— входное напряжение. Масштаб 20 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 5 мс/дел.

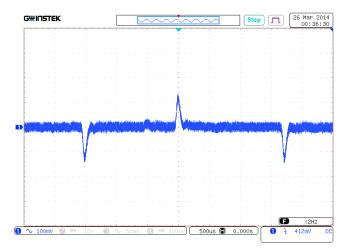
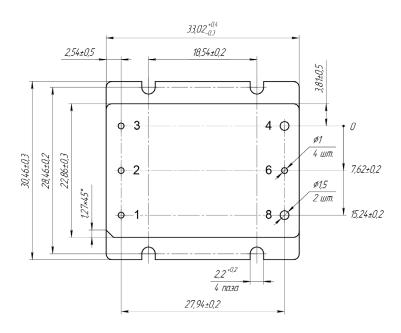



Рис. 20. Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока с 75% до 100 %.
Масштаб 100 мВ/дел. Развертка 500 мкс/дел.

9. Габаритные чертежи

Вывод	1	2	3	4	6	8
Назначение	+BX	Дист ВКЛ/ВЫКЛ	-BX	-ВЫХ	РЕГ	+BЫX

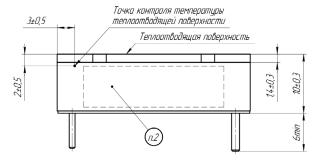


Рис. 21. Исполнение МДМ50-С.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43