

МДМ120-С

DC/DC преобразователи повышенной надежности

БКЯЮ.436430.005ТУ Приёмка ОТК Серия включена в ЕРРРП и ТОРП

1. Описание

Унифицированные DC/DC преобразователи с выходной мощностью 120 Вт, предназначенные для эксплуатации в промышленной аппаратуре, к которой предъявляются повышенные требования по надежности.

Схемотехника и конструкция преобразователя позволяет обеспечить соответствие стандартам с требованиями к ЭМС и защищенности от ВВФ. Рекомендуется для использования в системах электропитания воздушных судов и наземных транспортных средств.

Модули способны работать в широком диапазоне температур корпуса, включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току и короткого замыкания. ПП РФ №719

1.1. Особенности

- Гарантия 5 лет
- Форм-фактор 1/8 Brick
- Выходной ток до 20 А
- Рабочая температура корпуса -55...+105 °C
- Низкопрофильная 10,4 мм конструкция
- Защиты от перегрузки по току, КЗ и перенапряжения
- Дистанционное вкл/выкл
- Типовой КПД 91%
- Герметизирующая заливка

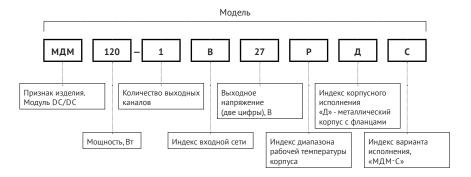
1.2. Дополнительная информация

1.2.1. Отдел продаж и служба технической поддержки

+7 (473) 300-300-5; mail@aedon.ru

1.2.2. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/ https://dzen.ru/aedon/


2. Содержание

1. Описание	1
1.1. Особенности	
1.2. Дополнительная информация	
2. Содержание	
3. Информация для заказа	
3.1. Сокращения	
3.2. Выходная мощность и ток	
3.3. Индекс номинального входного напряжения	
4. Основные характеристики	
4.1. Выходные характеристики	
4.2. Защиты	
4.3. Общие характеристики	4

4.4. Конструктивные параметры	4
5. Функциональные схемы	5
6. Схемы включения	5
6.1. Схема измерения ЭМС	6
7. Сервисные функции	6
7.1. Дистанционное управление	6
7.2. Регулировка	7
8. Результаты испытаний	
8.1. Зависимость КПД от нагрузки	8
8.2. Осциллограммы	9
8.3. Спектрограммы радиопомех	
Q Fafanutiu ia uantawu	

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{Bых.}	Выходная мощность
U _{Bых.ном.}	Номинальное выходное напряжение
І _{вых.ном.}	Номинальный выходной ток
І _{вых.мин.}	Минимальный выходной ток
U _{BX.HOM.}	Номинальное входное напряжение
U _{BX.MИН} U _{BX.MAKC} .	Диапазон входного напряжения
T _{KOPN} .	Рабочая температура корпуса
T _{OKP.}	Рабочая температура окружающей среды
нку	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	БКЯЮ.436430.005ТУ

3.2. Выходная мощность и ток

Модель	мдм120-С						
Выходная мощность, Вт	66 100 120						
Номинальное выходное напряжение, В*	3,3	5	12 15 24 27 48			48	
Номинальный выходной ток, А	20	20	10	8	5	4,2	2,5

3.3. Индекс номинального входного напряжения

Параметр	Индекс «В»
Номинальное входное напряжение, В	27
Диапазон входного напряжения, В	1640
Диапазон переходного отклонения (0,1 с), В	1050
Типовой КПД для U _{вых.} =12 В	91%

4. Основные характеристики

Полное описание характеристик, условий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр			Значение
Подстройка выходного напряжения		+1020 % от U _{вых.ном.}	
Установившееся отклонение выходного напря-	Нагрузка 10-100 %		±1 % ot U _{BыX.HOM.}
жения	Нагрузка 0-10 %		±2% от U _{Bых.ном.}
Нестабильность выходного напряжения	При плавном измене жения и выходного т	· · · · · · · · · · · · · · · · · · ·	±0,5 % от U _{вых.ном.}
	При изменении нагру	/зки 10 <i>-</i> 100 %	±0,5 % от U _{вых.ном.}
Размах пульсаций (пик-пик)	При токах нагрузки	U _{вых.} выше 5 В	2 % от U _{вых.ном.}
	с 0% до 100% от І _{вых.ном.}	U _{ВЫХ.} до 5 В включительно	не более 150 мВ
Максимальная суммарная емкость конденсато-	3,3 B		10000 мкФ
ров на выходе модуля (при нагрузке 100 %)	5 B		5200 мкФ
	12 B		850 мкФ
	15 B		580 мкФ
	24 B		220 мкФ
	27 B		220 мкФ
	48 B		50 мкФ
Время включения	По команде ДУ С момента подачи U _{в X.}		<50 мс
			<50 мс

Параметр		Значение
Переходное отклонение выходного напряжения	При скачкообразном изменении с U _{BX. НОРМ.} до U _{BX. МАКС.} / U _{BX. МИН.} (дли- тельность фронта >100 мкс)	±6 % от U _{Bых.ном.}
	При скачкообразном изменении тока нагрузки на 25 % от Івых.ном. (длительность фронта >100 мкс)	±5 % от U _{вых.ном.}
Потребление в режиме XX (при U _{BX.HOM})		300 MA
Потребление в выключенном состоянии по ДУ		3 MA

4.2. Защиты

Параметр	Значение
Защита от перегрузки	есть
Защита от короткого замыкания	есть
Защита от перенапряжения на выходе	есть
Синусоидальная вибрация	102000 Гц, 200 (20) м/с² (g), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (Т _{ОКР.} =35°C)	98%

4.3. Общие характеристики

Параметр	Значение	
Рабочая температура корпуса		−55+105 °C
Рабочая температура окружающей среды		−55+100°C
Температура хранения		−60+120 °C
Частота преобразования		800 кГц тип.
Прочность изоляции (60 с)	вход/выход	=2000 B
	вход/корпус, выход/корпус	=1500 B
Сопротивление изоляции @ =500 В, НКУ		не менее 1 ГОм
Гамма-процентная наработка на отказ, при Y=95% (в типовом режиме)		30 000 ч
Гарантийный срок эксплуатации		5 лет
Гарантийный срок хранения		5 лет

4.4. Конструктивные параметры

Параметр	Значение
Форм-фактор	1/8 Brick
Габаритные размеры	не более 58,8×30,8×10,4 мм без учета выводов
Масса	не более 64 г
Материал корпуса	алюминий с покрытием МДО
Материал выводов	фтористая бронза с покрытием SnPb
Условия пайки	260 °C @ 5 c

5. Функциональные схемы

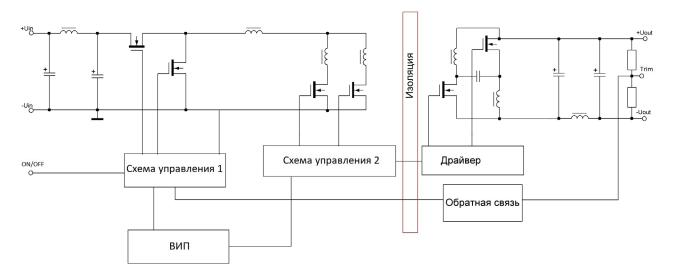


Рис. 1. Функциональная схема МДМ120-С.

6. Схемы включения

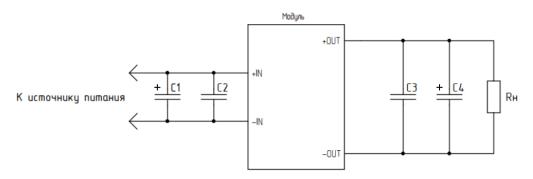


Рис. 2. Типовая схема включения МДМ120-С.

Вместо танталового конденсатора допускается установка конденсатора любого другого типа такой же емкости с низким значением ESR. Максимальное значение емкости входных конденсаторов не ограничено и выбирается с учетом конкретных условий эксплуатации модулей.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1	Танталовый	27 B	_	220 мкФ
C2	Керамический	27 B	_	10 мкФ
C3	Керамический	_	3,3; 5; 12; 24; 27; 48 B	10 мкФ
C4	Полимерный	_	3,3; 5 B	1000 мкФ
		_	12 B	330 мкФ
		_	15 B	220 мкФ
		_	24; 27 B	120 мкФ
		_	48 B	56 мкФ

6.1. Схема измерения ЭМС

Проверку уровня напряжения радиопомех модулей проводят согласно ГОСТ30429 в типовом режиме эксплуатации:

 $U_{BX} = U_{BX,HOM}$; $I_{BBIX} = I_{MAKC}$; $T_{KOP\Pi} \le 0.7 \times T_{KOP\Pi,MAKC}$.

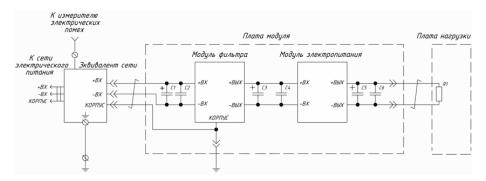


Рис. 3. Схема измерения ЭМС МДМ120-С.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1, C3	Танталовый	27 B	_	220 мкФ
C2, C4	Керамический	27 B	_	10 мкФ
C5	Полимерный	_	3,3; 5 B	1000 мкФ
			12 B	330 мкФ
			15 B	220 мкФ
			24; 27 B	120 мкФ
			48 B	56 мкФ
C6	Керамический	_	3,348 B	10 мкФ

7. Сервисные функции

7.1. Дистанционное управление

7.1.1. Включение модулей путем соединения вывода «ON/OFF» с выводом «-IN»

Функция дистанционного управления (ДУ) реализована таким образом, что при замыкании вывода «ON/OFF» на «-IN» модуль выключается. Функция «ДУ» позволяет по команде управлять состоянием модуля (включен/выключен), используя для управления механическое реле [Рис. 3], биполярный транзистор, подключенный к выводу «ON/OFF» по схеме «открытый коллектор» [Рис. 4] или оптрон [Рис. 5]

При этом через ключ может протекать ток до 2 мA, а максимальное падение напряжения на ключе должно быть не более 1 В. В разомкнутом состоянии к ключу может быть приложено напряжение до 8 В, допустимая утечка тока через ключ не должна превышать 50 мкA.

При организации ДУ одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ON/OFF», «-IN» и коммутирующий ключ. Если функция ДУ не используется, вывод «ON/OFF» допускается оставить неподключенным или обрезать.

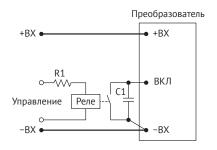


Рис. 4. ВКЛ/ВЫКЛ с помощью реле.

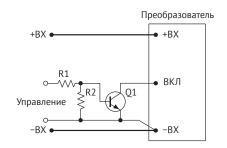


Рис. 5. ВКЛ/ВЫКЛ с помощью биполярного транзистора.

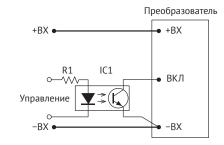


Рис. 6. ВКЛ/ВЫКЛ с помощью оптрона.

7.1.2. Выключение модулей путем подачи управляющего сигнала

Если напряжение на управляющем выводе менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на управляющем выводе 2,5 В и более, то модуль перейдет во включенное состояние. Максимальное напряжение, прикладываемое к входу «ON/OFF», не должно превышать 50 В.

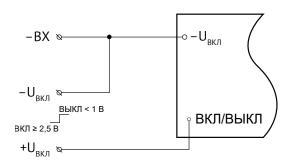


Рис. 7. Управление логическим напряжением.

7.2. Регулировка

Рис. 8. Регулировка увеличением Ивых.



Рис. 9. Регулировка снижением Ивых.

Регулирование выходного напряжения модулей осуществляется путем подключения вывода «TRIM» через резистор к выводу «-OUT» для увеличения выходного напряжения [Puc. 8] или к выводу «+OUT» для уменьшения выходного напряжения [Puc. 9].

Значение подстроечного резистора R1 (Rdown/Rup), можно рассчитать по формулам:

Rdown :=
$$\frac{\text{UBыx * K1-K2}}{\text{UBыx_HOM - UBыx}} - \text{K3} \quad \text{Rup := } \frac{\text{K2}}{\text{UBыx_HOM}} - \text{K3}$$

U вых ном	3,3	5	12	15	24	27	48
K1	1	1	3,83	4,7	9,76	9,76	17,4
K2	1,2	2,5	9,575	11,75	24,4	24,4	43,5
K3	1,5	1	4,7	4,7	6,8	7,5	6,8

Полученное значение резистора в кОм, Ивых — напряжение, необходимое после регулировки.

8. Результаты испытаний

8.1. Зависимость КПД от нагрузки

8.1.1. МДМ120-С с индексом входной сети «В»

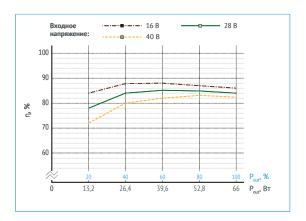


Рис. 10. МДМ120-1В3,3РДС.

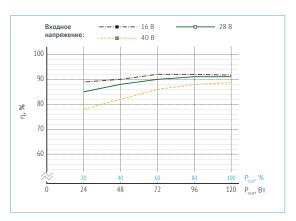


Рис. 12. МДМ120-1В12РДС.

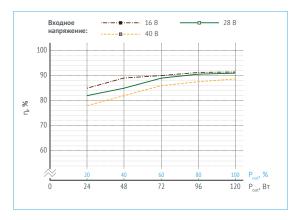


Рис. 14. МДМ120-1В24РДС.

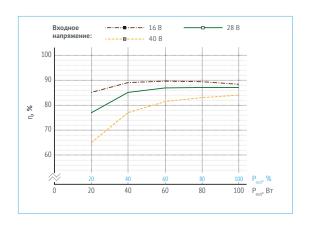


Рис. 11. МДМ120-1В05РДС.

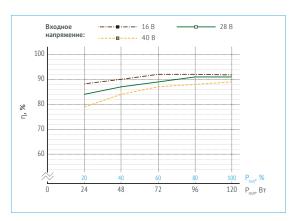


Рис. 13. МДМ120-1В15РДС.

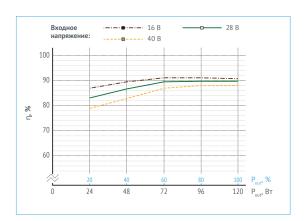


Рис. 15. МДМ120-1В27РДС.

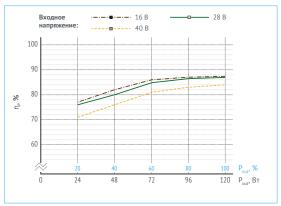


Рис. 16. МДМ120-1В48РДС.

8.2. Осциллограммы

8.2.1. Измерения для МДМ120-1В27РДС

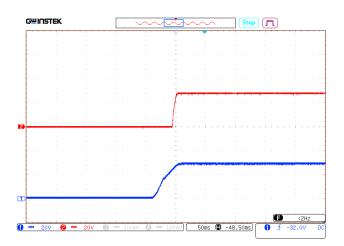


Рис. 17. Установление $U_{{\scriptscriptstyle B {\scriptsize \scriptsize B} {\scriptsize \scriptsize M}}{\scriptsize \scriptsize \scriptsize M}}$ с момента подачи ДУ.

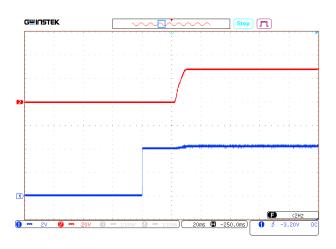


Рис. 18. Установление $U_{Bых.ном}$ с момента подачи $U_{Bx.ном}$.

Рис. 19. Пульсации $U_{{\scriptscriptstyle B\, bi\, X. H\, O\, M.}}$

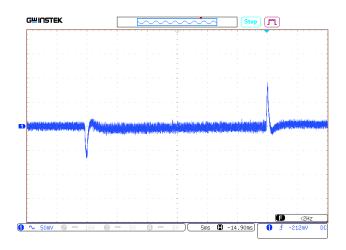
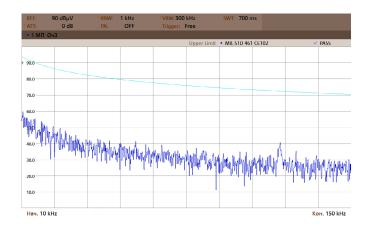
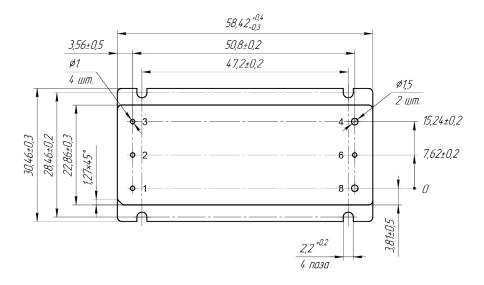



Рис. 20. Переходное отклонение U_{BMX} при изменении 0,75...1× I_{BMX} .

8.3. Спектрограммы радиопомех

8.3.1. МДМ120-1В27РДС

Режимы и условия испытаний: U_{BX} = 27 B, U_{BblX} = 27 B, I_{BblX} = 4,2 A, HKУ.



Puc. 21. Спектрограмма 0,1-150 kHz.

Puc. 22. Спектрограмма 0,15-10 MHz.

9. Габаритные чертежи

Вывод	1	2	3	4	6	8
Назначение	+BX	Дист ВКЛ/ВЫКЛ	-BX	-ВЫХ	РЕГ	+ВЫХ

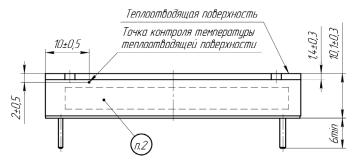


Рис. 23. Исполнение МДМ120-С.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43