

МДМ200-С

DC/DC преобразователи повышенной надежности

БКЯЮ.436430.005ТУ Приёмка ОТК Серия включена в ЕРРРП и ТОРП

Унифицированные DC/DC преобразователи с выходной мощностью 200 Вт, предназначенные для эксплуатации в промышленной аппаратуре, к которой предъявляются повышенные требования по надежности.

Схемотехника и конструкция преобразователя позволяет обеспечить соответствие стандартам с требованиями к ЭМС и защищенности от ВВФ. Рекомендуется для использования в системах электропитания воздушных судов и наземных транспортных средств.

Модули способны работать в широком диапазоне температур корпуса, включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току и короткого замыкания.

ПП РФ №719

1.1. Особенности

- Гарантия 5 лет
- Форм-фактор 1/4 Brick
- Выходной ток до 30 А
- Рабочая температура корпуса -55...+105 °C
- Низкопрофильная 12,7 мм конструкция
- Защиты от перегрузки по току, КЗ и перенапряжения
- Дистанционное вкл/выкл
- Типовой КПД 91%
- Герметизирующая заливка
- Выносная обратная связь
- Синхронизация

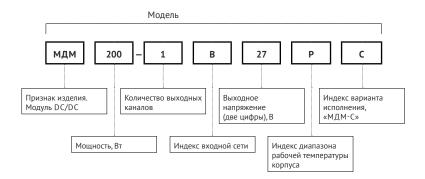
1.2. Дополнительная информация

1.2.1. Отдел продаж и служба технической поддержки

+7 (473) 300-300-5; mail@aedon.ru

1.2.2. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/ https://dzen.ru/aedon/


2. Содержание

1. Описание	1
1.1. Особенности	1
1.2. Дополнительная информация	1
2. Содержание	2
3. Информация для заказа	
3.1. Сокращения	
3.2. Выходная мощность и ток	
3.3. Индекс номинального входного напряжения	
4. Основные характеристики	
4.1. Выходные характеристики	
4.2. Защиты	
4.3. Общие характеристики	
4.4. Конструктивные параметры	4
5. Функциональные схемы	

6. Схема включения	5
6.1. Схема измерения ЭМС	6
7. Сервисные функции	7
7.1. Дистанционное управление	7
7.2. Регулировка	8
7.3. Синхронизация	8
7.4. Выносная обратная связь	9
8. Результаты испытаний	10
8.1. КПД	10
9. Осциллограммы	11
10. Габаритные чертежи	12

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание	
P _{BыX} .	Выходная мощность	
U _{вых.ном.}	Номинальное выходное напряжение	
І _{вых.ном.}	Номинальный выходной ток	
І _{вых.мин.}	Минимальный выходной ток	
U _{BX.HOM.}	Номинальное входное напряжение	
U _{BX.MИН} U _{BX.MAKC} .	Диапазон входного напряжения	
T _{KOPN} .	Рабочая температура корпуса	
T _{OKP.}	Рабочая температура окружающей среды	
нку	Нормальные климатические условия (температура воздуха от 15°C до 35°C)	
ТУ	БКЯЮ.436430.005ТУ	

3.2. Выходная мощность и ток

Модель	мдм200-С						
Выходная мощность, Вт	150 200						
Номинальное выходное напряжение, В*	5	9 12 15 24 27 48				48	
Номинальный выходной ток, А	30	22,2	16,7	13,3	8,3	7,2	4,2

3.3. Индекс номинального входного напряжения

Параметр	Индекс «В»
Номинальное входное напряжение, В	27
Диапазон входного напряжения, В	1640
Диапазон переходного отклонения (0,1 с), В	1050
Типовой КПД для U _{вых.} =12 В	91%

4. Основные характеристики

Полное описание характеристик, условий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр		Значение	
Подстройка выходного напряжения		+1020 % от U _{вых.ном.}	
Установившееся отклонение выходного	Нагрузка 10-100 %	±1% ot U _{Bых.ном.}	
напряжения	Нагрузка 0–10 %	±2% от U _{Bых.ном.}	
Нестабильность выходного напряжения	При плавном изменении входного напряжения и выходного тока	±0,5 % от U _{Bых.ном.}	
	При изменении нагрузки 10-100 %	±0,5 % от U _{вых.ном.}	
Размах пульсаций (пик-пик)	U _{вых.} выше 5 В	2% от U _{вых.ном.}	
	U _{вых.} до 5 В включительно	не более 150 мВ	
Максимальная суммарная емкость конденсато-	5 B	16000 мкФ	
ров на выходе модуля (при нагрузке 100 %)	9 B	4600 мкФ	
	12 B	4600 мкФ	
	15 B	3200 мкФ	
	24 B	1600 мкФ	
	27 B	1050 мкФ	
	48 B	370 мкФ	
Время включения	по команде ДУ	<50 мс	
	с момента подачи U _{B X}	<50 мс	

Параметр		Значение
Переходное отклонение выходного при скачкообразном изменении с $U_{BX,HOPM}$ до $U_{BX,MAKC}$ / $U_{BX,MH}$ (длительность фронта >100 мкс)		±10 % от U _{вых.ном.}
	При скачкообразном изменении тока нагрузки на 25 % от Івых.ном. (длительность фронта >100 мкс)	±5 % от U _{вых.ном.}
Потребление в режиме XX (при U _{в х.ном})		500 MA
Потребление в выключенном состоянии по ДУ		3 MA

4.2. Защиты

Параметр	Значение
Защита от перегрузки	есть
Защита от короткого замыкания	есть
Защита от перенапряжения на выходе	есть
Синусоидальная вибрация	102000 Гц, 200 (20) м/с² (g), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (T _{OKP.} =35°C)	98%

4.3. Общие характеристики

Параметр	Значение	
Рабочая температура корпуса		-55+105 °C
Рабочая температура окружающей среды		−55+100°C
Температура хранения		−60+120°C
Частота преобразования		800 кГц тип.
Прочность изоляции (60 с)	вход/выход	=2000 B
	вход/корпус, выход/корпус	=1500 B
Сопротивление изоляции @ =500 В, НКУ		не менее 1 ГОм
Гамма-процентная наработка на отказ, при Y=95% (в типовом режиме)		30 000 ч
Гарантийный срок эксплуатации		5 лет
Гарантийный срок хранения		5 лет

4.4. Конструктивные параметры

Параметр	Значение
Форм-фактор	1/4 Brick
Габаритные размеры	не более 58,4×36,8×12,7 мм без учета выводов
Macca	не более 100 г
Материал корпуса	алюминий с покрытием МДО
Материал выводов	фтористая бронза с покрытием SnPb
Условия пайки	260 °C @ 5 c

5. Функциональные схемы

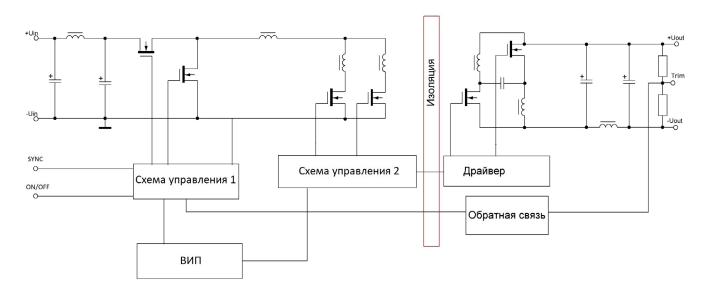


Рис. 1. Функциональная схема МДМ200-С.

6. Схема включения

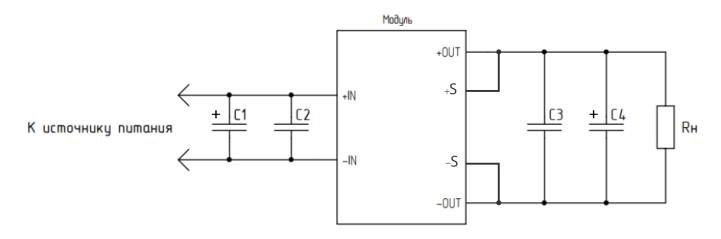


Рис. 2. Типовая схемы включения МДМ200-С.

Вместо танталового конденсатора допускается установка конденсатора любого другого типа такой же емкости с низким значением ESR. Максимальное значение емкости входных конденсаторов не ограничено и выбирается с учетом конкретных условий эксплуатации модулей.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1	Танталовый	27 B	_	220 мкФ
C2	Керамический	27 B	_	10 мкФ
C3	Керамический	_	5; 9; 12; 15; 24; 27; 48 B	10 мкФ
C4	Полимерный	_	5 B	1000 мкФ
		_	9; 12 B	330 мкФ
		_	15 B	220 мкФ
		_	24; 27 B	120 мкФ
		_	48 B	56 мкФ

6.1. Схема измерения ЭМС

Проверку уровня напряжения радиопомех модулей проводят согласно ГОСТ30429 в типовом режиме эксплуатации:

$$U_{BX} = U_{BX.HOM}$$
; $I_{BBIX} = I_{MAKC}$; $T_{KOP\Pi} \le 0.7 \times T_{KOP\Pi.MAKC}$.

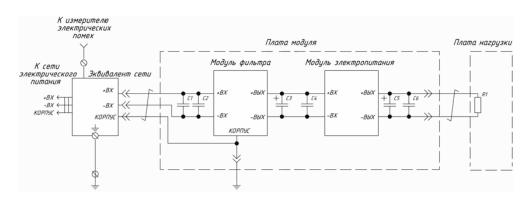


Рис. 3. Схема измерения ЭМС МДМ200-С.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1, C3	Танталовый	27 B	_	220 мкФ
C2, C4	Керамический	27 B	_	10 мкФ
C5	Полимерный	_	5 B	1000 мкФ
			9; 12 B	330 мкФ
		15 B	220 мкФ	
			24; 27 B	120 мкФ
			48 B	56 мкФ
C6	Керамический	_	548 B	10 мкФ

7. Сервисные функции

7.1. Дистанционное управление

7.1.1. Включение модулей путем соединения вывода «ON/OFF» с выводом «-IN»

Функция дистанционного управления (ДУ) реализована таким образом, что при замыкании вывода «ON/OFF» на «-IN» модуль выключается. Функция «ДУ» позволяет по команде управлять состоянием модуля (включен/выключен), используя для управления механическое реле [Рис. 4], биполярный транзистор, подключенный к выводу «ON/OFF» по схеме «открытый коллектор» [Рис. 5] или оптрон [Рис. 6].

При этом через ключ может протекать ток до 2 мА, а максимальное падение напряжения на ключе должно быть не более 1 В. В разомкнутом состоянии к ключу может быть приложено напряжение до 8 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации ДУ одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ON/OFF», «–IN» и коммутирующий ключ. Если функция ДУ не используется, вывод «ON/OFF» допускается оставить неподключенным или обрезать.

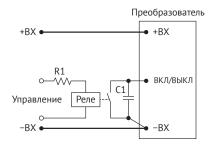
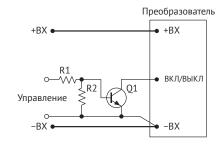



Рис. 4. ON/OFF с помощью реле.

Puc. 5. ON/OFF с помощью биполярного транзистора.

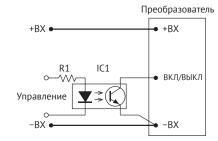


Рис. 6. ON/OFF с помощью оптрона.

7.1.2. Выключение модулей путем подачи управляющего сигнала

Если напряжение на управляющем выводе менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на управляющем выводе 2,5 В и более, то модуль перейдет во включенное состояние. Максимальное напряжение, прикладываемое к входу «ON/OFF», не должно превышать 50 В.

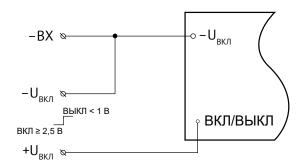


Рис. 7. Управление логическим напряжением.

7.2. Регулировка

Рис. 8. Регулировка увеличением Ивых.



Рис. 9. Регулировка снижением Ивых.

Регулирование выходного напряжения модулей осуществляется путем подключения вывода «TRIM» через резистор к выводу «-OUT» для увеличения выходного напряжения [Puc. 8] или к выводу «+OUT» для уменьшения выходного напряжения [Puc. 9].

Значение подстроечного резистора R1 (Rdown/Rup), можно рассчитать по формулам:

Rdown :=
$$\frac{\text{UBыx * K1-K2}}{\text{UBыx_HOM - UBыx}} - \text{K3} \quad \text{Rup := } \frac{\text{K2}}{\text{UBыx_HOM}} - \text{K3}$$

Uвых_ном	5	12	15	24	28	48
K1	1	3,83	4,7	9,76	9,76	17,4
K2	2,5	9,575	11,75	24,4	24,4	43,5
K3	1	4,7	4,7	7,5	7,5	6,8

Полученное значение резистора в кОм, Ивых — напряжение, необходимое после регулировки.

7.3. Синхронизация

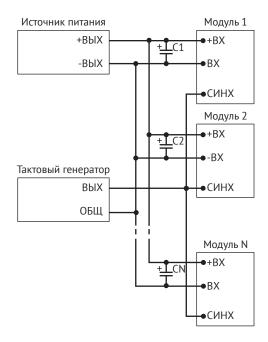


Рис. 10. Пример построения системы с синхронизацией от внешнего тактового генератора.

Тип модуля	Параметр	Мин.	Ном.	Макс.
	Напряжение верхнего порога, В	3,5	-	5,5
мдм200-С	Напряжение нижнего порога, В	0	-	0,5
	Коэффициент заполнения	0,2	-	0,5
	Частота синхроимпульсов, кГц	750	800	900

7.4. Выносная обратная связь

Применение выносной обратной связи* (OC) позволяет обеспечить компенсацию падения напряжения на соединительных проводах и развязывающих диодах. Максимальная величина компенсации падения выходного напряжения не менее $10\%~U_{\rm Bыx}$. Для обеспечения лучшей помехозащищённости выводы «+OC» и «-OC» модулей электропитания рекомендуется подключать к нагрузке «витой парой» сечением не менее $0.1~{\rm Mm}^2$.

Типовая схема включения выносной ОС для системы электропитания с «длинными» линиями питания приведена на рисунке:

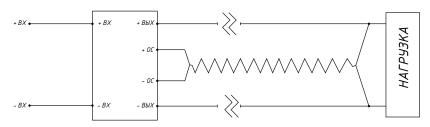


Рис. 11. Типовая схема включения выносной ОС.

В случае, когда функция выносной ОС не используется, необходимо напрямую соединить вывод *+OC* с выводом *+BbIX*, вывод *-OC* с выводом *-BbIX*. Не допускается оставлять неподключёнными выводы *+OC* и *-OC*.

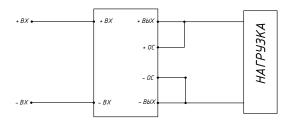
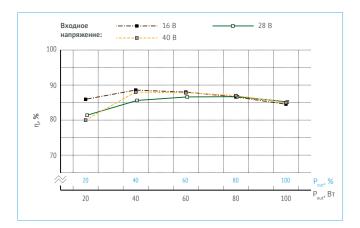
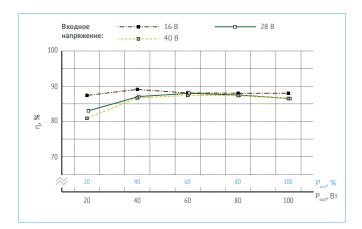



Рис. 12. Типовая схема включения без использования выносной ОС.

8. Результаты испытаний

8.1. КПД


На рисунках приведены примеры измерений КПД для модулей МДМ200-С (с зависимостью от значений входного напряжения и выходной мощности в диапазоне нагрузки 20...100%). Все представленные измерения носят ознакомительный характер и значения могут отличаться для модулей разных партий.

Входное напряжение: 40 В 100 90 80 100 Р_{ост} % Р_{ост} Вт

Рис. 13. МДМ200-1В05РС.

Рис. 15. МДМ200-1В24РС.

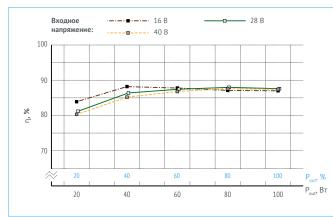
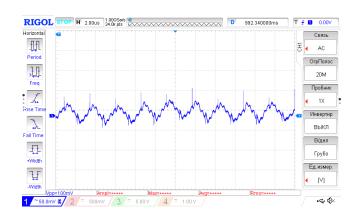


Рис. 14. МДМ200-1В15РС.

РИС. 16. МДМ200-1В27РС.

9. Осциллограммы

Все представленные измерения носят ознакомительный характер и могут отличаться для модулей разных партий, нормированные значения приведены в разделе 4 ТУ.


Имеется база данных с результатами по другим вариациям. Для получения информации, пожалуйста, обратитесь к персональному менеджеру или в службу технической поддержки.

9.1.1. Измерения для МДМ200-С


Режим и условия испытаний: Uвх = 28В, Івых = 13,3А, Свых = 200мкФ полимерный, НКУ.

Рис. 17. Установление $U_{\text{вых.ном}}$ с момента подачи сигнала ДУ (размыкание выводов «ДУ» и «-B X»). Луч 1 (синий) — напряжение на выводе «ДУ». Масштаб 2 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка 50 мс/дел.

Puc. 19. Осциллограмма пульсаций U $_{
m BЫX,HOM.}$ Масштаб 50 мВ/дел. Развертка 2 мкс/дел.

Puc. 18. Установление $U_{\text{вых.ном}}$ с момента подачи $U_{\text{вх.ном}}$. Луч 1 (синий) — входное напряжение. Масштаб 10 В/дел. Луч 2 (красный) — выходное напряжение. Масштаб 10 В/дел. Развертка 50 мс/дел.

10. Габаритные чертежи

Вывод	1	2	3	4	5	6	7	8	9
Назначение	+BX	вкл	-BX	-ВЫХ	-OC	РЕГ	+0C	+ВЫХ	СИНХР

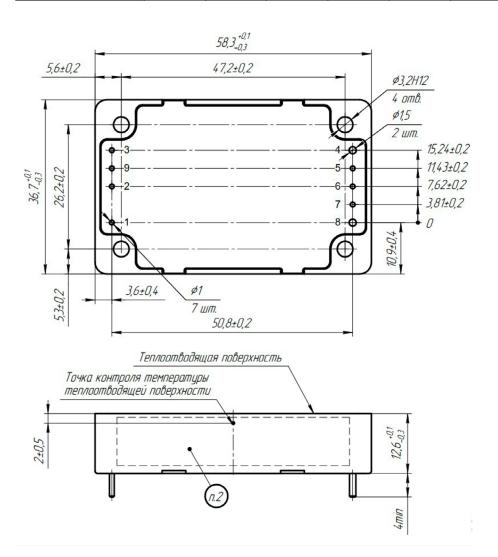


Рис. 20. Исполнение МДМ200-С.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43