

МДМ30-Б

DC/DC преобразователи повышенной надежности

БКЯЮ.436630.060ТУ

Приёмка ОТК

Серия включена в ЕРРРП и ТОРП

1. Описание

Унифицированные высокотемпературные DC/DC преобразователи с выходной мощностью до 30 Вт, предназначенные для эксплуатации в бортовой аппаратуре с повышенными требованиями к внешним воздействующим факторам и надежности.

Модули имеют ультраширокий диапазон входной сети 8-80 В для постоянной работы, обеспечивающий стабильное выходное напряжение при различных переходных отклонениях и аварийных режимах работы бортовой сети +27 В. Выпускаются в одно- и двухканальных исполнениях.

В модулях серии МДМ-Б реализован ряд сервисных функций: дистанционное вкл/выкл, регулировка выходного напряжения, синхронизация частоты преобразования, а также модули имеют комплекс защит от перегрузки по току и короткого замыкания, перенапряжения по выходу.

Дополнительными отличительными особенностями серии являются: усиленные внутренние фильтрующие цепи по входу и выходу преобразователя, что позволяет соответствовать основным требованиям по радиопомехам без дополнительных внешних LC-фильтров, включение модулей за время не более 35 мс позволяет использоваться в аппаратуре с особым требованием ко времени включения.

ПРЕДЗАКАЗ

ПП РФ №719

1.1. Особенности

- Гарантия 5 лет
- Одно и двухканальные исполнения
- Выходной ток до 6 А
- Рабочая температура корпуса -60...+125 °C
- Защиты от перегрузки по току, КЗ и перенапряжения
- Стабильная работа на XX
- Синхронизация и подстройка частоты преобразования
- Регулировка выходного напряжения +10...-20 %
- Включение менее 35 мс (при подаче Uвх)
- Прочность изоляции вх/вых =2000 В
- Улучшенная электромагнитная совместимость (Кривая «3» без внешних LC-фильтров)

1.2. Дополнительная информация

1.2.1. Описание на сайте производителя

https://aedon.ru/catalog/dcdc/series/39

1.2.2. Отдел продаж и служба технической поддержки

+7 (473) 300-300-5; mail@aedon.ru

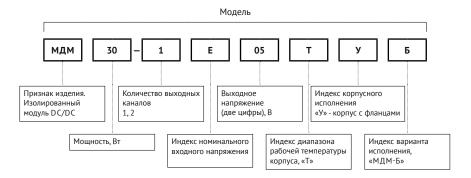
1.2.3. 3D модели, footprint для Altium Designer

https://aedon.ru/content/catalog/docs/308,387/МДМ-Б

1.2.4. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/

https://dzen.ru/aedon/


2. Содержание

1. Описан	ие	. 1
1.1. Occ	обенности	. 1
	полнительная информация	
	кание	
	мация для заказа	
	кращения	
	ходная мощность и ток	
	декс номинального входного напряжения	
	ые характеристики	
	ходные характеристики	
	циты	

4.3. Общие характеристики	4
4.4. Конструктивные параметры	4
4.5. Типовые значения КПД	
4.6. Функциональная схема	[
5. Схемы подключения	
6. Сервисные функции	
6.1. Дистанционное управление	
6.2. Регулировка	
6.3. Синхронизация	
7. Габаритные чертежи	

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{BыX}	Выходная мощность
U _{Bых ном}	Номинальное выходное напряжение
Івых ном	Номинальный выходной ток
Івых мин	Минимальный выходной ток
U _{BX HOM}	Номинальное входное напряжение
U _{BX MNH} U _{BX MAKC}	Диапазон входного напряжения
T _{KOPΠ}	Рабочая температура корпуса
T _{OKP}	Рабочая температура окружающей среды
НКУ	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	Технические условия БКЯЮ.436630.060ТУ

3.2. Выходная мощность и ток

Модель	мдм30-б										
Выходная мощность, Вт	30										
Номинальное выходное напряжение, В*	3,3	5	9	12	15	24	27	48	±5	±12	±15
Номинальный выходной ток, А	6	6	5	2,5	2	1,25	1,11	0,63	3 3	1,25 1,25	1 1

3.3. Индекс номинального входного напряжения

Параметр	Индекс «E»
Номинальное входное напряжение, В	27
Диапазон входного напряжения, В	880
Типовой КПД для U _{вых} =12 В	88%

4. Основные характеристики

Полное описание характеристик, условиий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр	Значение			
Подстройка выходного напряжения	+1020% от U _{вых ном}			
Установившееся отклонение выходного напряжения	U _{BX HOM} , I _{BЫХ HOM} , HKY	±2 % от U _{вых ном} для 1 канала ±5 % от U _{вых ном} для 2 канала		
	U _{BX HOM} , XX, HKY	±3 % от U _{вых ном} для 1 канала ±7 % от U _{вых ном} для 2 канала		
Нестабильность выходного напряжения	Плавное изменение U _{BX}	±2 % от U _{вых ном} для 1 канала ±5 % от U _{вых ном} для 2 канала		
	Плавное изменение І _{вых}	$\pm 1,5~\%$ от $U_{Bых\ HOM}$ для 1 канала $\pm 5~\%$ от $U_{Bых\ HOM}$ для 2 канала ($I_{Bыx}$ от 25% до 100%)		
Переходное отклонение выходного напряжения При скачкообразном изменении U_{BX} / I_{BbiX}		±10 % от U _{BЫХ НОМ}		
Размах пульсаций (пик-пик)	На внешнем C3 (C5) P _{вых} = 0100%	<90 мВ для $U_{\rm Bыx\ HOM}$ =3,3 В <100 мВ для $U_{\rm Bыx\ HOM}$ =5 В <150 мВ для $U_{\rm Bыx\ HOM}$ =12 В <1 % для $U_{\rm Bыx\ HOM}$ >24 В		
Время включения при U _{вх .ном} , I _{вых.ном}	С подачи U _{вх} или ДУ	не более 35 мс		
Максимальная суммарная емкость конденсато-	U _{B bl X} =3,3 B	14 000 мкФ		
ров на выходе модуля (Р _{вых} =100 %)	U _{B bl X} =5 B, ± 5 B	5 600 мкФ		
	U _{B bi X} =9, 12, 15, ± 12, ± 15 B	640 мкФ		
	U _{B bl X} =24 B	350 мкФ		
	U _{B bl X} =27 B	230 мкФ		
	U _{B bl X} =48 B	60 мкФ		

4.2. Защиты

Параметр	Значение	
Уровень срабатывания защиты от перегрузки по выходному току	<2 I _{Bых ном}	
Защита от короткого замыкания	автоматическое восстановление	
Защита от перенапряжения на выходе	1,5 × U _{HOM}	

4.3. Общие характеристики

Параметр	Значение			
Рабочая температура корпуса	Без падения мощности	−60+125 °C		
	При соблюдении температуры корпуса	-60+120°C		
Температура хранения		−60+125 °C		
Прочность изоляции (60 с) вход/выход		=2000 B		
	вход/корпус, выход/корпус	=2000 B		
Сопротивление изоляции @ =500 В, НКУ вход/выход, вход/корпус, выход/корпус		не менее 1 ГОм		
Гамма-процентная наработка на отказ, при Y=95	30 000 ч			
Срок гарантии	5 лет			

4.4. Конструктивные параметры

Параметр	Значение		
Габаритные размеры	не более 50,5×30,5×9 мм без учета выводов		
Macca	не более 30 г		
Материал корпуса	алюминий с покрытием хим. никелирование		
Материал выводов	оловянная бронза		
Условия пайки	260 °C @ 5 c		

4.5. Типовые значения КПД

Номинальное выходное напряжение, В	Значение КПД
3,3	82 %
5	87 %
9	88 %
12	88 %
15	87 %
24	87 %
27	86 %
48	87 %
±5	87 %
±12	88 %
±15	88 %

4.6. Функциональная схема

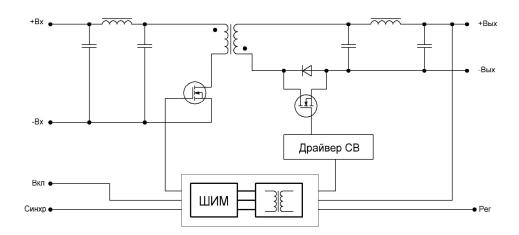


Рис. 1. Топология МДМ30-Б.

5. Схемы подключения

R_н — нагрузка.

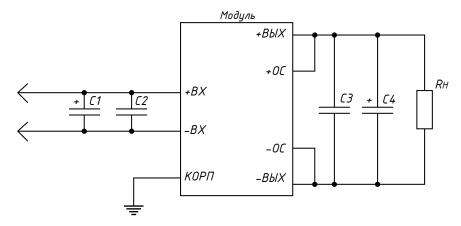


Рис. 2. Типовая схема подключения для одноканального исполнения.

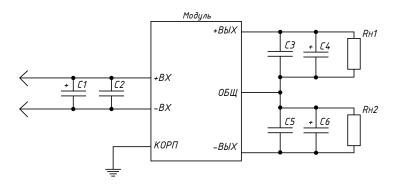


Рис. 3. Типовая схема подключения для двухканального исполнения.

Элемент	Тип	Входное напряжени	Значение
C1	Танталовый		33 мкФ
C2	Керамический		4,7 мкФ
C3, C5	Керамический	3,3 B 5, ±5, ±12, ±15 B 9, 12, 15 B 24, 27 B 48 B	27 мкФ 22 мкФ 27 мкФ 6,8 мкФ 2,2 мкФ
C4, C6	Танталовый	3,3, 5, ±5, 12, ±12, 48 B 24, 27 B	— 6,8 мкФ

6. Сервисные функции

6.1. Дистанционное управление

Дистанционное выключение модулей может осуществляться двумя способами:

Первый способ: подачей управляющего сигнала на вывод «ВКЛ/ВЫКЛ» относительно «-ВХ» [*Puc. 5*]. Если напряжение на выводе «ВКЛ/ВЫКЛ» менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на данном выводе 3,0 В или более, то модуль перейдет во включенное состояние.

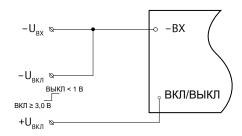


Рис. 5. Управление логическим напряжением.

Второй способ: замыкание вывода «ВКЛ/ВЫКЛ» на вывод «-ВХ». Для уверенного выключения модуля сопротивление замкнутой линии должно быть не более 500 Ом.

Замыкание вывода «ВКЛ/ВЫКЛ» на вывод «-ВХ» с использованием механического реле [*Puc. 6*], транзистора типа «разомкнутый коллектор» [*Puc. 7*] или оптрона [*Puc. 8*]. Для уверенного выключения модуля сопротивление замкнутой линии должно быть не более 500 Ом.

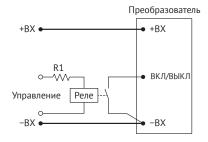


Рис. 6. «ДУ» с помощью реле.

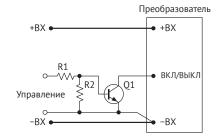


Рис. 7. «ДУ» с помощью биполярного транзистора.

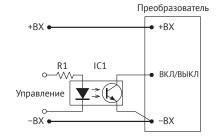


Рис. 8. «ДУ» с помощью оптрона.

6.2. Регулировка

Рис. 9. Регулировка увеличением Ивых.

Рис. 10. Регулировка снижением Ивых.

Регулирование выходного напряжения модулей осуществляется путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения или к выводу «+ВЫХ» для уменьшения выходного напряжения.

6.3. Синхронизация

Модули имеют вывод «СИНХ», позволяющий синхронизировать частоту преобразования модулей с помощью внешнего синхросигнала относительно вывода «-ВХ».

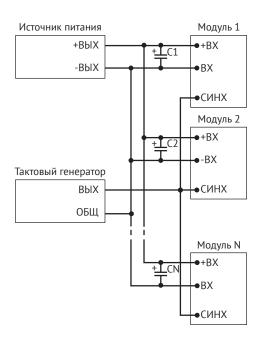
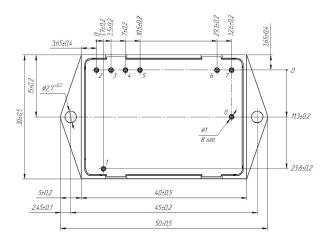


Рис. 11. Пример построения системы с синхронизацией от внешнего тактового генератора.


Параметры внешних тактовых импульсов приведены в таблице:

Тип модуля	Параметр	Мин.	Ном.	Макс.
мдм30-Б	Напряжение верхнего порога, В	4,2	_	5,5
	Напряжение нижнего порога, В	0	_	0,2
	Длительность импульса, нс	150	_	_
	Частота синхроимпульсов, кГц	450	500	550

7. Габаритные чертежи

Вывод	1	2	3	4	5	6	7	8
Назначение	КОРП	+BX	-BX	ВКЛ/ВЫКЛ	СИНХР	РЕГ	-ВЫХ	+ВЫХ

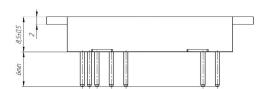
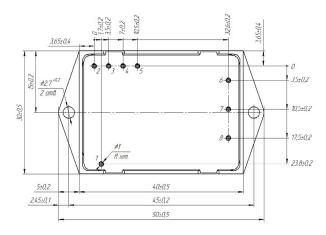



Рис. 12. Одноканальное исполнение в корпусе с фланцами.

Вывод	1	2	3	4	5	6	7	8
Назначение	КОРП	+BX	-BX	ВКЛ/ВЫКЛ	СИНХР	+ВЫХ	ОБЩ	-ВЫХ

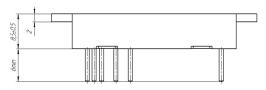


Рис. 13. Двухканальное исполнение в корпусе с фланцами.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43