

МДМ400-С

DC/DC преобразователи

БКЯЮ.436430.005ТУ Приёмка ОТК Серия включена в ЕРРРП и ТОРП

1. Описание

Унифицированные DC/DC преобразователи с выходной мощностью 400 Вт, предназначенные для эксплуатации в аппаратуре, к которой предъявляются повышенные требования к компактности с высокой мощностью. Схемотехника и конструкция преобразователей позволяет обеспечить соответствие высоким требованиям к качеству электропитания и защищенности от ВВФ. Рекомендуется для использования в аппаратуре воздушных судов и наземных транспортных средств. Модули способны работать в широком диапазоне температур корпуса, включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току и короткого замыкания.

ПРЕДЗАКАЗ

ПП РФ №719

1.1. Особенности

- Гарантия 5 лет
- Форм-фактор 1/2 Brick
- Выходной ток до 40 А
- Рабочая температура корпуса -55...+105 °C
- Низкопрофильная 12,7 мм конструкция
- Защиты от перегрузки по току, КЗ и перенапряжения
- Дистанционное вкл/выкл
- Параллельная работа
- Типовой КПД 92 %
- Герметизирующая заливка
- Выносная обратная связь
- Синхронизация

1.2. Дополнительная информация

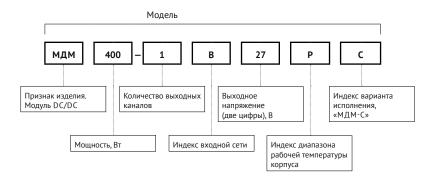
1.2.1. Отдел продаж и служба технической поддержки

+7 (473) 300-300-5; mail@aedon.ru

1.2.2. Ответы на часто задаваемые вопросы и полезные материалы:

https://aedon.ru/faq/

https://dzen.ru/aedon/


2. Содержание

1. Описание	1
1.1. Особенности	
1.2. Дополнительная информация	1
2. Содержание	
3. Информация для заказа	
3.1. Сокращения	
3.2. Выходная мощность и ток	
3.3. Индекс номинального входного напряжения	
4. Основные характеристики	
4.1. Выходные характеристики	
4.2. Защиты	
4.3. Общие характеристики	
4.4. Конструктивные параметры	

5. Функциональные схемы	. !
6. Схема включения	
6.1. Схема измерения ЭМС	. 6
7. Сервисные функции	
7.1. Дистанционное управление	. 6
7.2. Регулировка	
7.3. Синхронизация	. 8
7.4. Выносная обратная связь	. 8
7.5. Параллельная работа	
8. Габаритные чертежи	12

3. Информация для заказа

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 (473) 300-300-5 или электронной почте mail@aedon.ru

3.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание	
P _{BыX} .	Выходная мощность	
U _{вых.ном.}	Номинальное выходное напряжение	
І _{вых.ном.}	Номинальный выходной ток	
І _{вых.мин.}	Минимальный выходной ток	
U _{BX.HOM.}	Номинальное входное напряжение	
U _{BX.MИН} U _{BX.MAKC} .	Диапазон входного напряжения	
Ткорп.	Рабочая температура корпуса	
Токр.	Рабочая температура окружающей среды	
нку	Нормальные климатические условия (температура воздуха от 15°C до 35°C)	
ТУ	БКЯЮ.436430.005ТУ	

3.2. Выходная мощность и ток

Модель	мдм400-С					
Выходная мощность, Вт	360 400					
Номинальное выходное напряжение, В	тходное напряжение, В 9 12		15	24	27	48
Номинальный выходной ток, А	40	33,33	26,67	16,67	14,81	8,33

3.3. Индекс номинального входного напряжения

Параметр	Индекс «В»
Номинальное входное напряжение, В	27
Диапазон входного напряжения, В	1640
Диапазон переходного отклонения (0,1 с), В	1150
Типовой КПД для U _{вых.} =12 В	92%

4. Основные характеристики

Полное описание характеристик, условий эксплуатации, методик измерений и контроля параметров при производстве можно найти в технических условиях (ТУ). Обращаем внимание, что именно ТУ является нормативно-техническим документом продукции.

4.1. Выходные характеристики

Параметр		Значение
Подстройка выходного напряжения		+1020 % от U _{вых.ном}
Установившееся отклонение выходного	Нагрузка 10-100 %	±1% от U _{Bых.ном}
напряжения	Нагрузка 0–10 %	±2% от U _{Bых.ном}
Нестабильность выходного напряжения	При плавном изменении входного напряжения	±0,5 % от U _{Bых.ном}
	При изменении нагрузки 10-100%	±0,5 % от U _{вых.ном}
Размах пульсаций (пик-пик)	U _{вых.} выше 5 В	2 % от U _{вых.ном}
	U _{вых.} до 5 В включительно	не более 150 мВ
Максимальная суммарная емкость конденсато-	9 B	16 000 мкФ
ров на выходе модуля (при нагрузке 100 %)	12 B	4600 мкФ
	15 B	3200 мкФ
	24 B	1600 мкФ
	27 B	1050 мкФ
	48 B	370 мкФ
Время включения		<50 мс
Переходное отклонение выходного напряжения	При скачкообразном изменении с U _{BX.НОРМ} до U _{BX.МАКС} / U _{BX.МИН} (длительность фронта >100 мкс)	±10% от U _{вых.ном}
	При скачкообразном изменении тока нагрузки на 25 % от I _{вых.ном} (длительность фронта >100 мкс)	±5 % от U _{Bых.ном}
Потребление в режиме XX (при U _{вх.ном})		500 MA
Потребление в выключенном состоянии по ДУ		5 MA

4.2. Защиты

Параметр	Значение
Защита от перегрузки	есть
Защита от короткого замыкания	есть
Защита от перенапряжения на выходе	есть
Синусоидальная вибрация	102000 Гц, 200 (20) м/с² (g), 0,3 мм
Устойчивость к пыли	есть
Устойчивость к соляному туману	есть
Устойчивость к влаге (T _{OKP.} =35°C)	95%

4.3. Общие характеристики

Параметр		Значение
Рабочая температура корпуса		−55+105 °C
Рабочая температура окружающей среды		-55+100°C
Температура хранения		−60+120 °C
Частота преобразования		800 кГц (тип.)
Прочность изоляции (60 с)	вход/выход	=2000 B
	вход/корпус, выход/корпус	=1500 B
Сопротивление изоляции @ =500 В, НКУ		не менее 1 ГОм
Гамма-процентная наработка на отказ, при Y=97,5% (в типовом режиме)		50 000 ч
Гарантийный срок эксплуатации		5 лет
Гарантийный срок хранения		5 лет

4.4. Конструктивные параметры

Параметр	Значение	
Форм-фактор	1/2 Brick	
Габаритные размеры	не более 58,9×61,5×13,2 мм без учета выводов	
Масса	не более 165 г	
Материал корпуса	алюминий с покрытием МДО	
Материал выводов	фтористая бронза с покрытием SnPb	
Условия пайки	260 °C @ 5 c	

5. Функциональные схемы

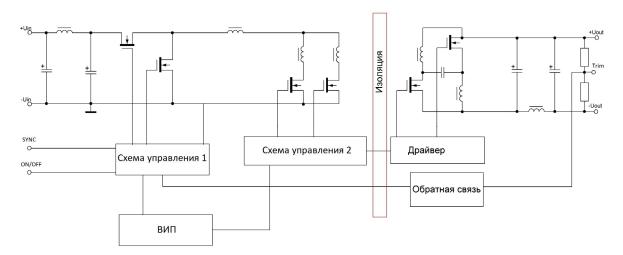


Рис. 1. Функциональная схема МДМ400-С.

6. Схема включения

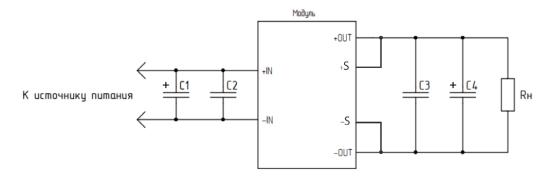


Рис. 2. Типовая схемы включения МДМ400-С.

Вместо танталового конденсатора допускается установка конденсатора любого другого типа такой же емкости с низким значением ESR. Максимальное значение емкости входных конденсаторов не ограничено и выбирается с учетом конкретных условий эксплуатации модулей.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1	Танталовый	анталовый 27 В		470 мкФ
C2	Керамический	27 B	_	22 мкФ
C3	Керамический	_	9; 12; 15 B	10 мкФ
			24; 27 B	4,7 мкФ
			48 B	2,2 мкФ
C4	Танталовый	_	9; 12 B	47 мкФ
			15 B	33 мкФ
			24; 27; 48 B	10 мкФ

6.1. Схема измерения ЭМС

Проверку уровня напряжения радиопомех модулей проводят согласно ГОСТ30429 в типовом режиме эксплуатации:

 $U_{BX} = U_{BX,HOM}$; $I_{BbiX} = I_{MAKC}$; $T_{KOP\Pi} \le 0.7 \times T_{KOP\Pi,MAKC}$.

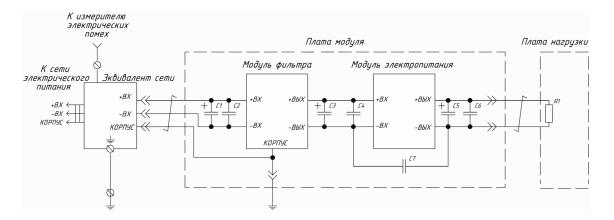
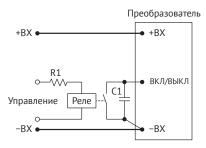
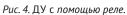


Рис. 3. Схема измерения ЭМС МДМ400-С.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1, C3	Танталовый 27 В		_	330 мкФ
C2, C4	Керамический	27 B	_	10 мкФ
C5	12		9 B	1000 мкФ
			12 B	330 мкФ
			15 B	220 мкФ
			24; 27 B	120 мкФ
				56 мкФ
C6	Керамический —		948 B	10 мкФ

7. Сервисные функции


7.1. Дистанционное управление


7.1.1. Включение модулей путем соединения вывода «ВКЛ/ВЫКЛ» с выводом «-ВХ»

Функция дистанционного управления (ДУ) реализована таким образом, что при замыкании вывода «ВКЛ/ВЫКЛ» на «-ВХ» модуль выключается. Функция «ДУ» позволяет по команде управлять состоянием модуля (включен/выключен), используя для управления механическое реле [Рис. 4], биполярный транзистор, подключенный к выводу «ВКЛ/ВЫКЛ» по схеме «открытый коллектор» [Рис. 5] или оптрон [Рис. 6].

При этом через ключ может протекать ток до 2 мА, а максимальное падение напряжения на ключе должно быть не более 1 В. В разомкнутом состоянии к ключу может быть приложено напряжение до 8 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации ДУ одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ/ВЫКЛ», «–ВХ» и коммутирующий ключ. Если функция ДУ не используется, вывод «ВКЛ/ВЫКЛ» допускается оставить неподключенным или обрезать.

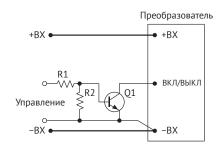


Рис. 5. ДУ с помощью биполярного транзистора.

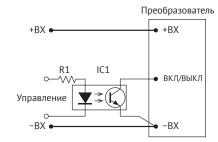


Рис. 6. ДУ с помощью оптрона.

7.1.2. Выключение модулей путем подачи управляющего сигнала

Если напряжение на управляющем выводе менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на управляющем выводе 2,5 В и более, то модуль перейдет во включенное состояние. Максимальное напряжение, прикладываемое к входу «ВКЛ/ВЫКЛ», не должно превышать 50 В.

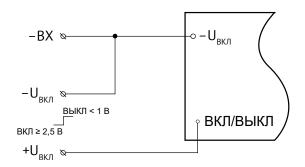



Рис. 7. Управление логическим напряжением.

7.2. Регулировка

 $Puc.~8.~Perулировка увеличением <math>U_{{\scriptscriptstyle BbIX}}$

Регулирование выходного напряжения модулей осуществляется путем подключения вывода «PEГ» через резистор к выводу «-BЫХ» для увеличения выходного напряжения [Puc. 8] или к выводу «+BЫХ» для уменьшения выходного напряжения [Puc. 9].

7.3. Синхронизация

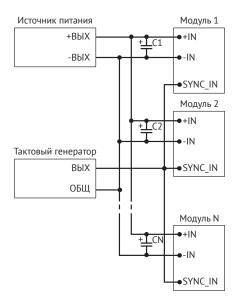


Рис. 10. Пример построения системы с синхронизацией от внешнего тактового генератора.

	Тип модуля	Параметр	Мин.	Ном.	Макс.
мдм400-С	Напряжение верхнего порога, В	Напряжение верхнего порога, В	3,5	-	5,5
	Напряжение нижнего порога, В	0	-	0,5	
	Коэффициент заполнения	0,2	-	0,5	
		Частота синхроимпульсов, кГц	750	800	900

7.4. Выносная обратная связь

Применение выносной обратной связи (ОС) позволяет обеспечить компенсацию падения напряжения на соединительных проводах и развязывающих диодах. Максимальная величина компенсации падения выходного напряжения не менее 10% U_{вых}. Для обеспечения лучшей помехозащищённости выводы «+ОС» и «-ОС» модулей электропитания рекомендуется подключать к нагрузке «витой парой» сечением не менее 0,1 мм². Типовая схема включения выносной ОС для системы электропитания с «длинными» линиями питания приведена на рисунке:

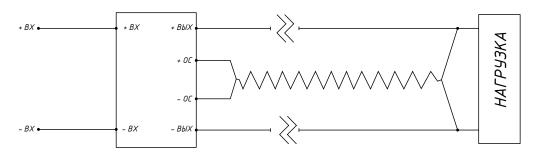


Рис. 11. Типовая схема включения выносной ОС.

В случае, когда функция выносной ОС не используется, необходимо напрямую соединить вывод «+OC» с выводом «+BЫX», вывод «-OC» с выводом «-BЫX». Не допускается оставлять неподключёнными выводы «+OC» и «-OC».

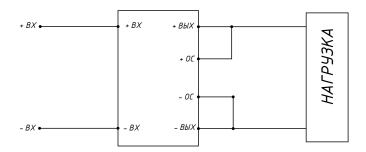


Рис. 12. Типовая схема включения без использования выносной ОС.

7.5. Параллельная работа

Модули МДМ400-С имеют функцию параллельной работы на общую нагрузку. Возможность параллельного соединения выходов модулей электропитания для работы на общую нагрузку позволяет увеличить суммарную выходную мощность модулей до значения:

$$P_{CYMM} = 0.85 \cdot N \cdot P_{H}$$
,

0,85 - рекомендуемый коэффициент загрузки модулей

N - количество модулей, включаемых параллельно

Р_н – номинальная выходная мощность модуля, Вт

Допускается параллельное подключение до четырех модулей одновременно.

Подключение модулей электропитания для параллельной работы осуществляется соединением входных и выходных цепей модулей на мощные сборные шины и объединением у них выводов параллельной работы, синхронизации и дистанционного выключения соответствии с [Puc. 13] и [Puc. 14]. При этом необходимо соблюдать следующие рекомендации:

- модули электропитания должны располагаться в непосредственной близости друг от друга.
- входные и выходные конденсаторы должны соответствовать типовой схеме включения модуля и располагаться в непосредственной близости от соответствующих штырей модулей;
- предохранители FU1 FU4 должны кратчайшим путем соединяться с входными конденсаторами модулей;
- разделительные диоды VD1 VD4 должны кратчайшим путем соединяться с выходными конденсаторами модулей. В качестве диодов VD1 VD4 применяются диоды Шоттки, имеющие минимальное падение напряжения. Их максимальное обратное напряжение должно быть в 1,5 2 раза больше, чем номинальное выходное напряжение модулей. Максимальный прямой ток диодов должен минимум в два раза превосходить номинальный выходной ток одного модуля.
- проводники, соединяющие выходные выводы модулей со сборными шинами должны быть одинаковыми, минимальной длины и большого сечения. При этом особое внимание следует обратить на «минусовые» выходы модулей электропитания. Подключение в «минусовые» выходные цепи разделительных диодов и токоизмерительных резисторов не допускается;
- сборные шины должны иметь сечение в N раз большее, чем проводники, соединяющие модули с шиной, где N количество модулей, включенных параллельно;
- соединение сборных шин с нагрузкой должно находиться в средней части шин;
- категорически запрещается коммутировать выходные цепи модулей во включенном состоянии;
- подключение цепей выводов «ПАРАЛ» должно осуществляться дифференциальной линией или витой парой;
- модули должны быть синхронизированы по рабочей частоте с помощью вывода «СИНХР»;
- непосредственно возле нагрузки должна располагаться дополнительная емкость, тип и значение емкости представлены в [Табл. 1].

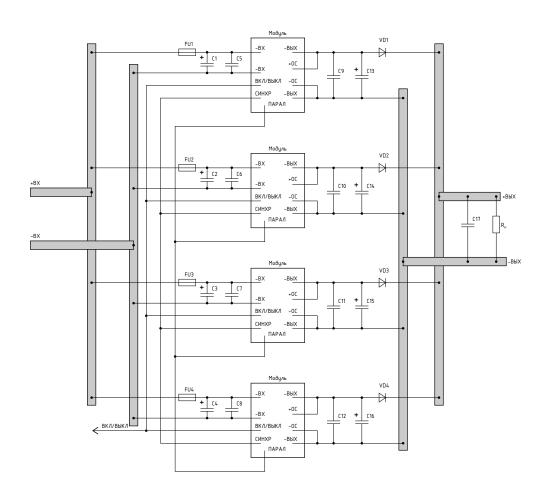


Рис. 13. Схема подключения модулей электропитания для параллельной работы

Тип модуля	Номинальное значение выходного напряжения, В							
	9	12	15	24	27	48		
	Значение емкости, мкФ							
мдм400-С	1000	470	470	220	220	100		

Табл. 1. Значение емкости конденсатора С17 (электролитический)

Если подключение осуществляется по [Рис. 14], то необходимо соблюдать дополнительные рекомендации:

- выводы «+OC» и «-OC» ведущего модуля должны подключаться к нагрузке дифференциальной линией или витой парой
- на выходе должен располагаться подгрузочный резистор R1, рассчитанный на максимальную рассеиваемую мощность не менее 10 Вт. Значение сопротивления резистора представлено в *[Табл. 2]*.

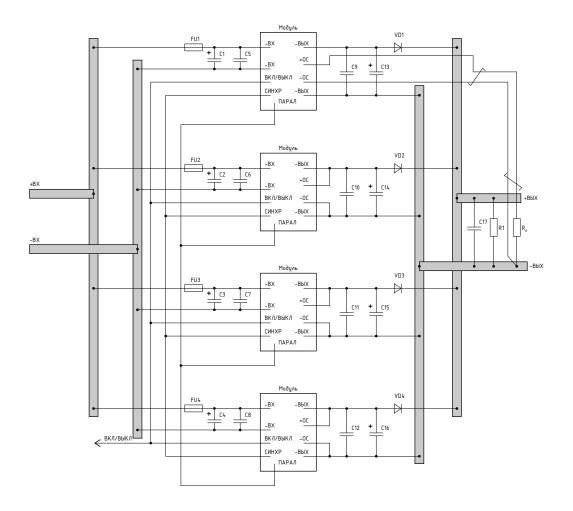


Рис. 14. Схема подключения модулей электропитания для параллельной работы с одним «ведущим» модулем.

Тип модуля	Номинальное значение выходного напряжения, В							
	9	12	15	24	28	48		
	Значение сопротивления, Ом							
МДМ400-С	22	36	47	150	220	560		

Табл. 2. Значение сопротивления резистора R1

Предохранители на входе и выходные разделительные диоды изолируют неисправный модуль в случае отказа от остальной системы электропитания.

8. Габаритные чертежи

Вывод	1	2	3	4	5	6	7	8	9	10
Назначение	+BX	вкл	СИНХР	-BX	-ВЫХ	-OC	РЕГ	+0C	+ВЫХ	ПАРАЛ

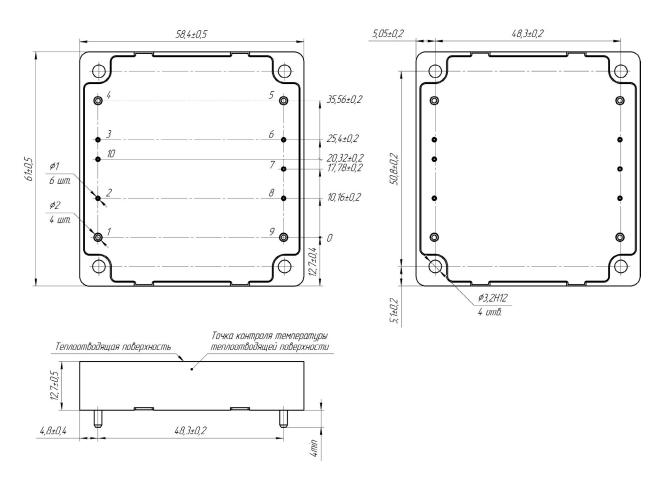


Рис. 15. Исполнение МДМ400-С.

www.aedon.ru

mail@aedon.ru

Компания «АЕДОН» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

Россия, 394026, Воронеж, ул. Дружинников, 56 +7 (473) 300-300-5, 8 800 333-81-43